Vol 4, No 2 (2017): Autumn (November)
PSEUDOMONAS SP. ÉS LAMINARIA SP. HATÁSA A KUKORICA NÖVEKEDÉSÉRE
EFFECT OF PSEUDOMONAS SP. AND LAMINARIA SP. ON THE GROWTH OF MAIZE
Abstract
A növények produktivitásának meghatározó tényezője a talajok foszfor-tartalma, melynek nagy része nem hozzáférhető a növények számára. Mobilizálásában segíthetnek a P-mobilizáló baktériumok. Kísérletünket szennyvíziszappal, szennyvíziszap- komposzttal és szerves trágyával kezelt, alacsony felvehető P- tartalommal (P-CAL 25 mg kg-1) rendelkező talajjal végeztük kukorica tesztnövénnyel. A talajt Pseudomonas sp.-vel (DSMZ 13134) inokuláltuk (1*109 CFU/kg talaj) és Laminaria barna algával kezeltük, mely elősegíti a gyökérnövekedést. A kísérlet során mértük a növénymagasságot, a szár átmérőjét, a relatív klorofill tartalmat, a gyökér és hajtás száraz tömegét és a gyökérhosszt. A Pseudomonas kedvező hatását a szennyvíziszap kezelésnél, míg a barna alga kedvező hatását a gyökérnövekedésre csak a szerves trágya kezelésnél tudtuk kimutatni. A kukorica gyökérnek teljes hossza 35%-kal nőtt barna alga kezelés hatására.
The most important factor for plant growth is the phosphorous content of the soils. But, not all the phosphorous contents are available for plants. P-mobilizing bacteria could help to plants to uptake P. Our experiment was conducted in low-P content soil (P-CAL 25 mg kg-1) with sewages sludge, sewage sludge compost and manure with maize as a test plant. The soil was inoculated with Pseudomonas sp. (DSMZ 13134) (1*10-9 CFU/kg soil) and treated with Laminaria, which has positive effect on root growth. The plant height, stem base diameter, relative chlorophyll content, dry weight of shoot and root and root length were measured. Positive effect of Pseudomonas was showed at sewage sludge treatment and Laminaria’s effect was advantageous at manure treatment. The total root length of maize was 35% longer at Laminaria treatment, respectively.
Keywords
Kulcsszavak: Barna alga, Kukorica, Növekedés, Gyökérhossz,
Keywords: Brown alga, Maize, Plant growth, Root length,
References
[1] | Alsaedi A. H., Elprince A. M. (2000): Critical phosphorous level for Salicarnai growth. Agron J 92, pp. 336-345. |
[2] | Atkinson D. (1973): Some general effects of phosphorus deficiency on growth and development. New Phytologist 72,pp. 101-111. |
[3] | Cakmak I., Hengeler C., Marchner H. (1994): Partitioning of shoot and root fry matter and carbohydrated in beansplants suffering from phosphorus, potassium ans magnesium deficiency. J Exp Bot 45, pp. 1245-1250. |
[4] | Halpern M., Bar-Tal A., Ofeky M., Minz D., Müller T., Yermiyahn U. (2015): The use of biostimulants for enhancingnutrient uptake. Advances in Agronomy, pp. 130-141 |
[5] | Hojabbasi M. A., Schumacher T. E. (1994): Phosphorus effects on root growth and development in two maizegenotyes. Plant and Soil 158, pp. 39-46. |
[6] | Horst W. J.., Abdou M., Wiesler F. (1996): Difference between wheat cultivars in acquisition and utilization ofphosphorus. Zeitschrift für Pflanzernaehnurg und Bodenkunde 159, pp. 155-161. |
[7] | Gerretsen, F. C. (1948): The influence of microorganisms on the phosphate intake by the plant. Plant Soil 1,pp. 51–81. |
[8] | Khamis S., Chaillou S., Lamaze T. (1990): CO2 assimilation and partitioning of carbon in maize plants deprived ofprthophosphate. J Exp Bot 41, pp. 1619-1625. |
[9] | Lyon C. B., Garcia C. R. (1944): Anatomical responses of tomato stems to variation on the macronutrient anionsupply. Bot. Gaz. 105, pp. 394-405. |
[10] | Mosimann C., Oberhansli T., Ziegler D., Nassal D., Kandelet E., Boller T., Mader P., Thonar C. (2016): Tracing oftwo Pseudomonas strains in the root and rhizosphere of maize, as related their plant growth-promoting effect incontrasting soils. Front Microbiol 7, pp. 2150-2164. |
[11] | Mtshali J., Tiruneh A. T., Fadiran A. O. (2014): Characterization of sewage sludge generated from wastewatertreatment plants in Swaziland in relation to agricultural uses. Resources and Environment 4 (4), pp. 190-199. |
[12] | Rosolem C. A., Assis J. S., Santiago A. D. (1994): Root growth and mineral nutirition of corn hybrides as affected byphosphorus and line. Comm Soil Sci Plant Anal 25, pp. 2491-2499. |
[13] | Silverbush M., Barber S.A. (1983): Sensitivity of simulated phosphorus uptake to parameters used by a mechanistic-mathematical model. Plant and Soil 74, pp. 93-100. |
[14] | Simpson, R. et al. (2011): Strategies and agronomic inventions to improve the phosphorus-use efficiency of farmingsystems. Plant Soil 349, pp. 89–120. |
[15] | Vessey J. K. (2003): Plant growth-promoting rhizobacteria as biofertilizer. Plant Soil 255, pp. 571-586. |