VOL 3, NO 2 (2016): AUTUMN (NOVEMBER)
Az általánosított logisztikus eloszlás súlyozott első momentuma
The first moment of the generalized logistic distribution
Abstract
Ebben a cikkben az általánosított logisztikus eloszlás súlyozott várható értékét számítjuk ki, amit a súlyozott kvantilis korreláció teszt bevezetése motivál.
In this paper the first moment of the generalized logistic distributi- on is explicitly obtained as the function of the generalized Harmo- nic numbers. The motivation is the weighted quantile correlation test.
Keywords
Kulcsszavak: súlyfüggvény, súlyozott várható érték, általánosított harmonikus számok,
Keywords: weight function, weighted expected value, generalized harmonic numbers,
References
[1] | M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, andmathematical tables., volume 55 of National Bureau of Standards Applied Mathematics Series.For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington,D.C., 1964. |
[2] | S. Csörgő. Weighted correlation tests for scale families. Test, 11(1):219–248, 2002. |
[3] | S. Csörgő. Weighted correlation tests for location-scale families. Mathematical and ComputerModelling, 38(7-9):753–762, 2003. Hungarian applied mathematics and computer applications. |
[4] | S. Csörgő and T. Szabó. Weighted correlation tests for gamma and lognormal families. TatraMountains Mathematical Publications, 26(part II) :337–356, 2003. Probastat ’02. Part II. |
[5] | S. Csörgő and T. Szabó. Weighted quantile correlation tests for Gumbel, Weibull and Paretofamilies. Probability and Mathematical Statistics, 29(2):227–250, 2009. |
[6] | T. de Wet. Discussion of "Contributions of empirical and quantile processes to the asymptoticthe-ory of goodness-of-fit tests". Test, 9(1):74–79, 2000. |
[7] | T. de Wet. Goodness-of-fit tests for location and scale families based on a weighted L2-Wasserstein distance measure. Test, 11(1):89–107, 2002. |
[8] | E. del Barrio, J. A. Cuesta-Albertos, and C. Matrán. Contributions of empirical and quantile pro-cesses to the asymptotic theory of goodness-of-fit tests. Test, 9(1):1–96, 2000. With discussion. |
[9] | E. del Barrio, J. A. Cuesta-Albertos, C. Matrán, and J. M. Rodríguez-Rodríguez. Tests of good-ness of fit based on the L2-Wasserstein distance. The Annals of Statistics, 27(4):1230–1239,1999. |