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Osszefoglaléds

Erdekes, sokféleképpen megjelen6 mechanikai rendszer a
mozgatott felfiiggesztésii inga. A mozgasegyenleteket a
Lagrange-formalizmussal vezeljlik le. Dinamikai szempontbdl a
rangatott inga egy gerjesztett disszipativ rendszer és a
altalanos esetben kaotikus mozgas jon létre, ezen keresztiil
mutatjuk be a kdosz jellemzéit.

Abstract

An interesting mechanical system with many different forms is
the mobile suspension pendulum. The equations of motion are
derived from the Lagrangian formalism. From a dynamical point
of view, the twitched pendulum is an excited dissipative system
and by computer simulation of the trajectory we will see that in
general a chaotic motion is generated, through which the
characteristics of chaos are demonstrated.

1. Bevezetés

Erdekes, sokféleképpen megjelené mechanikai rendszer a mozgatott felfiiggesztésii inga. Ez
olyan inga, amelynek nem régzitett a forgaspontja, hanem egy egyenes (esetleg gorbe) mentén
mozgathato. llyen ingaval a gyakorlati élet szamos teruletén talalkozhatunk.

1. abra: gyakorlati példak a rangatott felfiiggesztési ingara

Egy masik fontos és széles kérben megjelend valtozata a mozgatott tartépontu inganak az un.
inverz inga, amely lényegében egy alul megtamasztott rud, amelynek alatamasztasi pontjat
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vizszintesen mozgatjuk, ez esetben az egyensuly fenntartasahoz sziikséges vezérlés a lényegi
gyakorlati vonatkozas.

2. dbra: inverz inga példak

Dinamikai leiras szempontjabél az inverz inga a bonyolultabb, igy érdemes a targyalast ezzel
kezdeni, mivel abbdl mar a ,kdzdnséges” inga mozgasegyenletei egyszeriibb modellként
megkaphatdék. Az inverz inga mozgasegyenleteit a Lagrange-formalizmussal vezetjik le, melybdl
specialis esetként szarmaztatjuk a vizszintesen, illetve fligg6legesen periodikusan rangatott
felfuggesztésli inga mozgasegyenleteit. Roviden kitérink az inverz inga egyensulyi vezérlésének
problémajara, majd igen érdekes jelenségként a fuggdlegesen rangatott inga (mas néven Kapitza-
inga) onvezérld egyensulyara. Dinamikai szempontbdl a rangatott inga gerjesztett disszipativ
rendszer és a mozgaspalya szamitégépes szimulacidjaval latni fogjuk, hogy altalanos esetben igen
bonyolult mozgasforma jon létre; a mozgas kaotikus. Megmutatjuk, hogy tranziens és permanens
kaosz is kialakulhat. A kaosz jellemzdit szamitégépes modellen tanuimanyozzuk, megkonstrualjuk
a kaotikus attraktor stroboszkopikus (Poincaré) térképét, a kezdeti feltételekre vald érzékenységet
faklya-diagramon demonstraljuk, az el6rejelzési idd alapjan becslést adunk a Ljapunov-exponensre
és szemléltetjik a kaotikus attraktor fraktal jellegét.

2. Dinamikai targyalas

Kezdjuk a bonyolultabb rendszerrel, tehat az inverz ingaval, amelybdl egyszerisitésekkel
megkaphatjuk a kényszerfeltétellel mozgatott inga leirasat is.

A leggyakoribb miszaki megvalésitasban a sulytalannak tekintheté / hosszusagu ingarud
végére m tdmegl test van erésitve, a rud alsé vége pedig csuklésan csatlakozik az M témegi mozgd
kocsira (lasd a 3. abran). A kocsi mozgasat megfelel6en valasztott F er6vel szabalyozzuk, amely
ebben a formaban izgalmas szabalyozasi probléma.
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3. dbra: inverz inga modell

Kétféle uton is eljuthatunk a mozgasegyenletekhez: a jél ismert Newtoni megkdzelitéssel,
illetve a Lagrange-formalizmusban. Jelen tanulmanyban az utdbbi alapjan végezzik el a targyalast,
két okbdl is. Egyrészt a Lagrange-formalizmus gondolati tisztasagaban és matematikai
eleganciajaban szinte mar miivészeti alkotasként tekinthet§, Hamilton véleménye szerint
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.<udomanyos koltészet” (,a scientific poem”). Masrészt fontos tanulsag, hogy 0Osszetettebb
mechanikai rendszer esetén hatékonyabb a Lagrange-féle metédus, mint a newtoni leiras.

A részletes targyalast a cikk jobb attekinthet6sége érdekében a Fliggelékben irjuk le, a 3. dbra
szerinti jeloléseket hasznalva.

Azt kapjuk, hogy az inverz inga mozgasegyenletei (a Fuggelék (F.2.a) és (F.2.b) képletei):

(M +m)i+m-1-sing-¢>—m-I-cosp-$=F (2.1.a)
m-l-¢gp—m-cosp-Xx—m-g-sinp=0 (2.1.b)

Az utobbi egyenletben az m tdmeggel egyszerisithetnék, de tudatosan nem tessziuk meg,
hogy az egyenlet (2.1.a)-hoz hasonléan eré mértékegységii maradjon (ennek hasznossagat késébb
latni fogjuk).

A standard formatumra alakitdshoz rendezzik ki bel6lik a masodrendi derivaltakat:

P F +mg-sing-cos@—ml-sing- ¢

(M+m—m-cos2(p)

) (M+m)~g-sin(p+(F—ml~sin(o-(b2)-cosgp
¢=

(M+m—m-cos2 (o)-l (2.2)

A rangatott inga mozgasegyenletét mar kdnnyen megkaphatjuk a fenti egyenletek specialis
eseteként. Az irodalomban szokasos jelolések érdekében térjlnk at a szogvaltozo tekintetében a 3.
abran jelolt szogrél a 4. abran felvett szogre.

4. abra

Haszndljuk a ¢ < @+ 7 helyettesitést, amellyel (2.1.a), illetve (2.1.b) az alabbi alaku lesz:
(M +m)i—m-1-sing-¢> +m-1-cosp-$=F (2.3.a)
m-l-¢g+m-cos@-X+m-g-sinp=0 (2.3.b)
Dinamikai szempontbdl egyszerlibb specialis eset, ha az (xp;yF) felfuggesztési pont
mozgasat kényszerfeltételként szabjuk meg. Ekkor tehat x,.(¢) ésy, (¢) adott fliggvények (mig

M=0és F=0).

Vizszintes egyenesen periodikusan rangatott inga esetén x,. (t) = A4-sin (277”) » Vi (t) =0,

ami kdnnyen visszavezethet6 az inverz inga targyalasara, hiszen (F.1.) képletekben lathato, hogy
az x koordinata a kocsi koordinataja, tehat az inga forgaspontjanak koordinataja

©(1)=x, (;)sz(t)=A.sin[27”tj.

Kényszerfeltétel esetén (2.3.a) mozgasegyenlet eliminalhatd, hiszen a felfiggesztési pont
mozgasa a kényszer miatt el6irt idéfliggésa, tehat csak a masodik mozgasegyenlet marad:
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2
m.].(b_m.cosgp-A(z?”j ~sin(27”t]+m~g-sin(p=0

2
X=-4- el -sin 2—ﬂt
T r )

A realisztikus leiras érdekében illessziink be a mozgasegyenletbe a sebességgel aranyos,
mozgast akadalyozé (,surlodasi”) FS:c-v:c-(l(j)) er6tagot (e lépésben hasznos, hogy az

ahol felhasznaltuk, hogy:

egyenlet er mértékegyseg!):
2
m-l-gb—m-cosqo-A-(%j -sin(z%tj+m-g~singo+c-(l(p)=O

A szdggyorsulasra rendezve a vizszintesen periodikusan rangatott inga mozgasegyenlete:

. A 27[)2 .(27[) g . c .
p=—:|—| -sin| —1 |-cosp—=-sinp——-@
T / m

I\T (2.4.)

Flgglleges egyenesen periodikusan rangatott inga esetén x,. (t) =0,y (t) =4- sin(z%t}

Ekkor sajnos nem hasznalhatjuk kdzvetlenul az inverz ingara kapott eredményeket, mivel ott a
felflggesztési pont vizszintesen mozgott, itt pedig fliggblegesen, tehat (F.1) helyett most:

x,, =0

. (27
Yu =A-s1n[7tJ
x, =—l-singp

V., :A-sin(z%t}rl-cosga

Ismét végig kell hat vezetni a Fliggelékben megismert Lagrange-formalizmust, melyet nem
részleteziink, végul a fliggélegesen periodikusan rangatott inga mozgasegyenlete:

. g . A (2ﬁ]2 . (Zﬂ j . c .
p==-sinp——-| — | -sin| —¢ |-singp——-¢@

A (2.2), a (2.4), illetve a (2.5) mozgasegyenletekkel megkaptuk az inverz inga, a vizszintesen
periodikusan rangatott inga, illetve a fuggblegesen periodikusan rangatott inga matematikai
modelljét, az alabbiakban ezek alapjan vizsgalhatjuk Oket.

3. Az inverz inga vezérlése

Az inverz inga vezérélésre csak attekintd moédon térink ki, mivel nem ez a f6 gondolati
irAnyunk és az irodalomban széleskdriien targyalt, lasd példaul [1].

A Lagrange-formalizmusban a leirdshoz bevezettik a ¢, =x¢ésg,=¢ Aaltaldnos
koordinatakat. Az inverz inga (2.2.) mozgasegyenletei masodrendi differencialegyenletek, amelyek
a q,=v=X sebesség és az q,=w=¢ szOgsebesség valtozdk bevezetésével elsérendi
differencialegyenlet-rendszerré alakithatok:
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X=v
p=w
5 F +mg -sin@-cos @ —ml-sin ¢- @’

(M+m—m-cos2go)

(M+m)-g-singo+(F—ml-singo-a)2)-cosgp

w=

(M+m—m-cos2¢>)-l

q,
- |4
A kapott elsérendl differencidlegyenlet-rendszert irjuk at a g = * | valtozokat (altalanos
q;
q,
koordinatakat és altalanos sebességeket) hasznalva:
1 :f("), (3.1.2)
ahol:
fi(91:9.45.9,) = 4;
g, 12(4,.42.95.9:) = a4
. . . 2
PO 7 B /. _ F+mg-sing, -cosq, —ml-sing, -q,
= = 91-9,-93-9 -
q g, ¢ /(q) (01:02:4:04) (M+m—m-coszq2)
94 A ) F-cosq,+(M +m)-g-sing, —ml-q; -sing, -cosq,
q1-9>-93-49, ) =
PR (M+m—m-coszq2)-l

A realisztikus leiras érdekében illessziink be itt is a kocsi sebességével aranyos, mozgast
akadalyozo (,surlédasi”) F, =—c-v =—c- X =—cq, erbtagot a gyorsulasokat megado f; és fs képletbe

(e lépésben fontos, hogy mindkét képlet szamlaldja eré mértékegységll!), tehat az F « (F —c- q3)
helyettesitéssel:

11(9:92:95:45) = s
q, fz(%’%’%’%):‘h
N Y :(F—c~q3)+mg-sinq2-cosqz—ml-sin%-qf
9= g, cs f(q)— ﬁ(ql’qzj%’%) (M+m—m-cos2CIz)
qs F—c-q)-cosq, +(M+m)-g-sing, —ml-q; -sing, -cos
f4(q],q2,q3,q4)=( g;)-cosg, +(M +m)-g 0, ], sing, cosg,
(M+m—m~cos q2)~l

(3.1.b)

Az inverz inga fels6é egyensulyi helyzetben tartdsanak vezérléséhez linearizaljuk a fenti
mozgasegyenleteket a ¢ . fels6 egyensulyi helyzet kordl:

_ 2nw
qp = N ahol x, tetszOleges valos €s n tetsz6leges egész szam,
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tehat:

dAG —
= _p
dt 4

. Aé’
T (3.2)

az f(cj) vezérl6figgveny-vektor Jacobi-matrixa a g, fels6 egyensulyi
‘}_/a:

ahol AG=G—g, és Df

allapot értéknél, azaz:

9| 9 o, o,
0q,l, O, 04|, 04l

9 9, o, o,
N 86]1 z 86]2 a% i 6614

9 fe 51'/()
s % ofs of; of,
oq, 0q, |. 0qs is oq,

A A B A

a‘h i aqz i a% = aq4 de (3 3)

A vezérlés tehat az F erdn keresztll torténik, amelyet a gyakorlati megvaldsitasokban az alabbi
alakban szoktak felvenni:

dp

F(t)=ak-G-f-q,
ahol az els6 tag hordozza a pillanatnyi g allapottdl fiiggd (linearis) visszacsatolast, a masodik tag a

sebességtél fuggd ellenallasi tagot. A k csatolasi vektor a (3.2) és (3.3) formula alapjan
optimalizalhato (a (3.3) matrix konkrét kiszamitasa igen faradtsagos munka), mig az a és 3 konstanst
empirikus tapasztalat alapjan lehet becsullni. Az inga konkrét megvaldsitasa lathaté példaul a [2]
videon.

4. Fuggodlegesen rangatott inga

Targyalasunkat a fligg6legesen periodikusan rangatott ingaval (Kapitza-inga néven is ismert)
folytatjuk, mert amint latni fogjuk kapcsolddik az inverz inga felsé egyensulyi helyzetben tartasahoz.
(2.5) formula megadja a mozgasegyenletet:

. g . A(27Z’]2.(27Z'j. c .
Q==>-sm@——-—| -sin| —1¢ |-SInp——-¢@
T m

! PAT (4.1)

A Fuggelék B. részében beszélink a dimenzittlanitas jelentéségérdl és metodusarol. Jelen
modellben a rangatas T periddus-idejének felhasznalasaval a ¢ <—¢-T helyettesitéssel attérhetlink
dimenzidtlan t idévaltozéra, amellyel (4.1.) a kdvetkez6 alaku lesz (az idd szerinti derivaltakban is el
kell végezni a helyettesitést!):

(b:G-singo—R-sin(27z't)-sin(/?—c'¢’ (4.2)

amelyben:

R= (27r)2§

dimenzidtlan konstansok.
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Vegyuk észre, hogy a rangatott ingat jellemzé ,eredeti” 6 (I, m, g, ¢, A, T) mértékegységes
paraméter helyett csupan az ezekbdl el6allé 3 (R, G, T) mértékegység nélkili paraméter marad. Ez
praktikusan azt jelenti, hogy minden olyan inga, amely bar az ,eredeti” paramétereiben kilbénbézik,
de a harom dimenzidtlan paramétere azonos, dinamikai szempontbdl tokéletesen azonos
viselkedést mutat.

A dimenziétlan mozgasegyenlet numerikus szimulaciéo szempontjabdl is kedvez6, hiszen a
szamitdogép csak szamokkal tud dolgozni, mértékegységekkel nem. A megvaldsitott szimulacios
program (lasd pl. [3]) meglepd jelenséget mutat: bizonyos paraméterértékek mellett az inga
L,magatol”, tehat szabalyzé visszacsatolas nélkil is megmarad a felsé instabil egyensulyi allapotban.
A dinamikus egyensulyi feltétele:

3~(27r)2 Ve ~ 3 R2>1
4 Z-g-T2_4.(27[)2 G

4.4)
A szimulaciés programmal igazan jOl el lehet kisérletezgetni. Gyakorlatilag megvaldésitott,
példaul Lego Technic segitségeével épitett Kapitza-inga nézhet6 a [4] videdn.

5. Vizszintesen rangatott inga kaotikus tulajdonsagainak szamitégépes
vizsgalata

Mar levezettik a (2.4.) formulaval adott mozgasegyenletet:

. A (2%]2 . (27[) g . c .
p=—-| == | -sin| ==t |-cosp—=-sinp——-¢
T l m

I\T (5.1.)

Az el6z6 fejezetben targyalt dimenzidtlanitassal ezuttal kapjuk, hogy:

gb:R-sin(27zt)-COS(p—G-sin(0—C'(P (5.2.)

amelyben a mar bevezetett:

gr’ . _cT
[ és m (5.3.)

G=

R= (27r)2 4

Z ki
dimenzidtlan konstansok.

Bevezetve w=¢ szdgsebesség valtozot, (5.2.)-t elsérendl differencialegyenlet-rendszerré

alakitjuk:

=0
@&=R-sin(2zt)-cosp—G-sinp—C-w (5.4)

A fenti (csatolt) nemlinearis differencialegyenlet-rendszert nem lehet ,kézzel” analitikusan
megoldani, tehat numerikus mddszerekkel, szamitégép segitségével végezzuk a vizsgalatokat,
ezért a kdoszelmélet a szamitdégépes kisérleti fizika egyik legfontosabb terllete. Ez azonban
alapvetéen programozéi kompetenciakat tételez fel, ami sokak szamara nem kis kihivas. Eppen
ezért tartjuk nagyon kiemelendének és ajanljuk oktatasi és kutatasi célra egyarant a Dynamics
Solver programot, amely szabadon letdlthet6 és tetsz6leges dinamikai rendszerek szimulacidjara
alkalmas, roppant felhasznalébarat és nem szikséges programozéi tudas a hasznalatahoz. Azon
Olvasok szamara, akik az aldbb bemutatott szimulacidkat sajat maguk ki szeretnék probaini, ajanljuk
az [5] linken letolthetd (ZIP fajlba csomagolt) bemutaté anyagot, amely az ELTE Doktori Iskolaja
szamara készult (a kaosz_num_DS elektronikus_tananyag NP\DS\dslvr198-64.exe fajllal
telepithetd a Dynamics Solver program). A tovabbiakban a Dynamics Solver (DS) programmal
dolgozunk. Egy mar kész *.ds probléma-fajl legalapvetébb szint(i hasznalathoz sziikséges funkciok:

a futtatas a '@ ikonnal, a megallitas a o ikonnal, a folytatas a 4+ ikonnal, a grafikus ablakok
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torlése (akar futas kdzben is!) a E ikonnal, a paraméter-tabla megjelenitése a ikonnal, a

kezdetifeltétel-tabla megjelenitése pedig a £ ikonnal térténik.
A DS-ben megirt szimulaciés program tipikus palyaja lathaté az 5. abran.

B suns intesen rezgetett inga [EEREER =

5. abra: a surlédasos vizszintesen periodikusan rangatott inga végpontjanak kaotikus palyaja

Az 5. abran lathat6é esetben a kaotikus mozgas végtelen ideig fent marad, ez a permanens
kaosz jelensége. Mas paraméter értékek esetén, azonban a kaotikus mozgas csak véges ideig
torténik, bizonyos id6 utan a mozgas regularis (pl. periodikus) lesz, ez a tranziens kaosz jelensége
(lasd pl. 6. abrakon).

[ végének mozgésa [E=8 Eo8 ==

6.b. abra: periodikus palya t =40-T id6 utan
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A kaosz egyszeri (kis szabadsagi foku), egyértelm( (determinisztikus) térvényszeriiségekkel
(azaz néhany nemlinearis dinamikai egyenlettel) leirhato rendszerek idébeli valtozasa (mozgasa),
lényegi vonasai az alabbiakban foglalhatok 6ssze:

1. szabalytalan (nem-periodikus, bonyolult) viselkedés,

2. a kiindulasi allapot hibajanak rohamos névekedése (a kezdeti feltételekre vald
extrém érzékenység) kovetkeztében a gyakorlatban hosszu idGtartamra
elérejelezhetetlen, csak valosziniiségi leiras adhato,

3. azidbbeli valtozast teliesen megado fazistérben a hosszu tavu viselkedést egyfajta
struktara, rend jellemezi, a fazistérbeli kép (leképezés) fraktalgeometriat mutat.

Valamely dinamikai rendszer egy iddpillanatbeli allapotanak egyértelmii megadasahoz

szikséges a (minimalis szamu) xz{xl,xz,...,xn} valtozé altal kifeszitett n dimenzids absztrakt
fazistér. A rendszer idéfejlédését valtozoinak )_‘c:]_"()_c) elsérendi differencialegyenlet rendszerével
adjuk meg:

X = f(x,%,,..0x,)

%, = o (x,%,,..,x,)

)'C,, :ﬁ,(xpxzﬂ""xn)_ (55)

A rendszer allapotat barmely pillanatban a fazistér egy pontja reprezentalja, a rendszer
id6fejlédése soran a fazispont altal bejart gérbe neve trajektdria.

Jelen modellben bevezetve a © =27zt fazisvaltozét (5.4.) a mozgasegyenleteket (5.5.)
standard alaku elsérend( differencialegyenlet-rendszerré alakitjuk:

p=o
@=R-sin(©)-cosp—G-sinp—-C-®
O=2x (5.6.)

Tehat a modell fazistere 3 dimenzids (harom dimenzié alatt nem is lehetséges kaosz), a kaosz
fenti Iényegi vonasainak 1. pontja pedig az 5. és 6. dbrakon szemléletesen tetten érhetd.

A DS segitségével egyszeriien tanulmanyozhatjuk a kdosz 2. Iényegi vonasat is, a kaotikus
rendszer id6beli viselkedésének a kezdeti feltételekre mutatott extrém érzékenységét. Ez azt jeleni,
hogy a rendszert (ugyanazon paraméter értékek mellett) nagyon kézeli kezdéfeltételekbél inditva,
nagyon eltéré idéfuggést tapasztalunk, azaz tavolrdl sem teljesul az altaldban megszokott ,kis
kezdeti hiba, kis eredménybeli eltérés” elv. Az extrém érzékenység legszemléletesebb illusztralasi
moddja az. un. faklya-diagram készitése.

T ||||'|||||r'""\H‘rr'mw""mll'

‘IIIII'!II]IH""H‘\H‘HH\I"'WW"HHH J

7. abra: sz6gsebesség-idS faklyadiagram
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A faklya-diagramon a kaotikus rendszer valamely valtozéjanak idébeli valtozasat abrazoljuk,
tobb, egymashoz nagyon koézeli kezdéfeltételbdl inditva. A 7. abran szemlélhetjik az a)(t)

szOgsebesség id6fliggvényét 5 kiildnbdzé, nagyon kozeli @o kezdeti kitérésszog érték mellett (a
rendszer tobbi valtozéjanak kezdeti értéke minden inditasnal azonos). Jol lathatd, hogy a
szdgsebesseg idébeli valtozasat megadd gorbek egy ideig egyitt futnak, majd teljesen szétvalnak,
azaz bizonyos karakterisztikus id6tartam (mas néven elbrejelzési id6) utan a nagyon kicsiny
kezdbértékbeli eltérések teljesen eltérd viselkedéshez vezetnek.

Az (55.) mozgasegyenletekkel adott rendszer x={x,x,,...x,} fazispontbeli

&x = (8%,,8%,,...,8x, ) perturbacicjanak idévaltozasar:

d(ox(r)) —

% :Df-Sx(t

~—

ahol D_f a mar korabban megismert Jacobi-matrix:

o oo
ox, Ox, Oox,

8|
Il

Yo Yo Y
ox, ox, | ox

A palyak tavolsagat megadd Ar (1 \/Bxl (£)+8x; (¢)+...+8x; (t) metrika idéfiiggése:

Ar(t)=Ar, A

’

ahol Ar, a kezdéfeltétel tavolsag, X(r) pedig a lokalis Ljapunov-exponens, ami fligg a kezdbfeltétel

valasztasatél. A lokalis Ljapunov-exponensek atlaga a A Ljapunov-exponens, ami a kozeli
kezd&pontok tipikus tavolodasi ratajat irja le. Kaotikus rendszerekben a Ljapunov-exponens pozitiv,
tehat exponencialis a palyak tavolodasa. (Ha a rendszer nem kaotikus, akkor altalaban a tavolodas
exponencialisnal lassabb, vagyis a Ljapunov-exponens nem pozitiv.) Annyi Ljapunov-exponens
létezik, ahany valtozéval leirhaté a rendszer, vagyis ahany dimenzids a fazistér. A kezdéfeltételekre
valé érzékenységet a legnagyobb Ljapunov-exponens hatarozza meg.

A Ljapunov-exponens numerikus meghatarozasanak egyik lehetésége az el6rejelzési id6
becslésére alapul.

eldrejelzési idd

T T T T T T

In (A Fy)

8. abra: a Ljapunov-exponens meghatarozasa elbrejelzési id6é becslés alapjan
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A Ay, kezdeti tavolsag és a t. el6rejelzési id6 kozotti 6sszeflgges:

1
te=——h‘1 AVO _to
A (4) . (5.7.)
A metodus tehat: elkeszitjuk a faklyadiagramokat kilonboz6é Ar, kezdéfeltétel tavolsagok
mellett, a diagramokon becstiljik a f. elérejelzési idoket, majd abrazoljuk az 6sszetartozé (InAy, ; te

) értékparokat, amelyek (5.7.) szerint (kdzelitéleg) egy egyenesre esnek és az illesztett egyenes
meredekseégenek reciprokanak minusz egyszerese adja a Ljapunov-exponenst.

B0 s st

0 e Lt Ot Wodow Go Ormw Contipamen by
DwE Y 06 G0 O 02+ 05 OBAUE X ?

Vinow G (ras_ Con

[HCRTR o O Contiumen Mg
» DFH SF OM B0 Ok 0249 66 DBBHE T 7

E

9. abra: a periodikusan rangatott inga Ljapunov-exponensének becslése elbrejelzési id6 alapjan

A 9. abran konkrét becslést mutatunk be: 5 (i=0,1,..,4) egymastdl nagyon Kkicsiny (
A(pol.:2-104‘/5i) kezd8szog eltéréssel inditott szbg-id6 flggést abrazolé faklyadiagramot
rajzoltunk meg, mindegyiken bejeldlve a becsiilt a t; elérejelzési idét. Abrazolva az dsszetartozd (
InAg,; ; tei) értékparokat, majd a pontokra legkisebb négyzetek modszerével egyenest illesztve az

egyenes meredeksége -0,57 értéklinek adodik, igy a Ljapunov-exponens 1,75.
A fazistér vonzd halmazat, amely felé a trajektériak hosszu idétavlatban koézelednek
attraktomak nevezzik:
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e egyszerl attraktor: szabalyos (regularis) mozgasokhoz tartozé attraktorok, fixpont
attraktor, vagy hatarciklus attraktor,

e Kkulonos (kaotikus) attraktor: szabalytalan (kaotikus) mozgast végzé rendszer fraktal
geometriaju attraktora.

Permanens kaosz esetén a rendszer fazispontja soha nem hagyja el az attraktort, mig
tranziens kaosznal a trajektéria csak veéges ideig marad a kaotikus attraktor kézelében.

Poincaré térkép (-leképezés). a trajektorianak csak egy kivalasztott fellletet atdofé (adott
altérbe esd) metszéspontjait abrazoljuk, melyek diszkrét pontsorozatot alkotnak. A gerjesztett
rendszerek esetén hasznalt un. stroboszképikus leképezés specialis Poincaré-leképezés, amely a
trajektoria gerjesztési periodusidénként (azaz allandd fazisértékeknél) vett mintajaként kapott
pontsorozat.

A 10. abran a vizszintesen rangatott surlédasos inga stroboszkopikus leképezése lathaté az
R = 33,55, G = 9,81 és C = 1 paraméterek mellett.

Dynamics Solver - sutharmgerjinga_szog-szogsebesseq_fazissik - [Graph Window #1] - g
@ File Edt Output Window Go Draw Configurstion Help L]
DH &F 08 BE @B @e=+4+D oL OBEEHG O 7

Eszogsebesseg

10. abra: a rangatott inga stroboszkdpikus leképezése a sz6g-szbgsebesség fazissikban

Ezen keresztll jol szemléltethetjik a fentebb felsorolt kaoszjellemz6k 3. vonasat, vagyis a
hosszu tavu viselkedést megjelenitd fazistérbeli attraktor fraktalgeometriajat. A fraktalok egyik
lényegi vonasa az Onhasonlésag azaz, hogy felnagyitva egy részletiket az eredetivel azonos
struktura jelenik meg.

11. abra: fraktalok 6nhasonlé (skalainvarians) jellege
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A szimulaciét a 10. abra paraméterértékei mellett futtatva a 11. abran lathaté kinagyitas
sorozatot elvégezve nagyon szépen szemlélheté az 6nhasonld jelleg: a kaotikus attraktor un.
Cantor-szal tipusu fraktalgeometrigja.

. . N - —
7‘\/ % Y \\.
- o ;. . L 9 ! '- \; \ -
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b LI 8 1
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/ o £ A : 1"' [
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12. abra: a kaotikus attraktor fraktalgeometriajanak énhasonlésagi jellege

6. Kovetkeztetések

Jelen cikk 6sszefoglalé jellegli: egy érdekes, a gyakorlatban igen sokrétlien megjelené mechanikai
rendszernek, a mozgatott felfliggesztésii inganak targyalasat tekinti at. Egyfel6él didaktikusan
bemutatja az ilyen tipusu rendszerek dinamikai leirasat (Lagrange-formalizmusban), masfel6l a
kapott mozgasegyenletekkel leirhaté modellek vizsgalatat sajat szamitogépes szimulaciok alapjan.
Ezen szimulaciokra tdmaszkodva szemléletes attekintd képet ad a kaotikus rendszerek lényeqi
sajatossagairol.

Fuggelék
A. Az inverz inga mozgasegyenleteinek levezetése Lagrange-formalizmusban

Az alabbiakban a 3. abra jeldléseit hasznaljuk.
A mozgasegyenletek levezetése az:

Euler-Lagrange egyenletek alapjan torténik (lasd pl. [6], [7], [8]), ahol L=T -V a rendszer
Lagrange-fliggvénye, ¢, az i-ik altalanos koordinata, O, az altalanositott erd i-ik komponense. Az

egyenlet pontos jelentését az inga mozgasegyenleteinek targyalasa soran részletesen elemezziik.
Az inverz inga mozgasa két-dimenziés (fuggdleges sikban torténik), tehat D =2. Az inga két
tdmegpontbdl (pontszeriinek tekinthet anyagi objektumbdl) all: az M témegl ,kocsi” és az m
tomegl ,nehezék” alkotja. Tehat N = 2.

Ennek alapjan Descartes-koordinata rendszerben 2*2 = 4 koordinatara van szukség: az M
tomegi ,kocsi” helyét megadod xu és yw koordinatakra, illetve az m tomegi ,nehezék” helyét megado
Xm €S ym koordinatakra.

A mozgasra kényszerfeltételek vonatkoznak, azaz el6irasok a koordinatakra.

Egyrészt a kocsi az x-tengelyen mozog, tehat az y koordinataja mindig nulla, tehat az els6
feltételi egyenlet:

/=3y =0
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Masrészt kocsi és a nehezék tavolsaga mindig /, tehat a Pitagorasz-tétel szerint (nullara
rendezve):

£ = (3, —x, ) + 32~ =0
Tehat s = 2 a kényszerfeltételek szama.

Ezek alapjan mar meghatarozhatoé a rendszer szabadsagi fokainak a szama:
f=N-D-s5s=2-2-2=2

Tehat elegendd csak 2 megfelel6en valasztott altalanos koordinata a 4 Descartes-koordinata
helyett.

Szembedtld, hogy jelen esetben érdemes a kocsi x = xy koordinatajat és a rud fliggélegessel
bezart ¢ sz6gét valasztani, hiszen ez a két adat mindkét test helyét egyértelmien definialja.

Legyenek tehat g, = x €s g, = ¢ a valasztott altalanos koordinatak.
Fejezzuk ki ezekkel a ,eredeti” Descartes-koordinatakat:

Xy =X

Y =0

X, =x—I[-sing

Yy =1-cosg (F.1.)

Lényeges, hogy az &ltalanos koordinatak megfelelé valasztasaval a feltételi figgvények
azonossagga alakulnak, igy eliminalédnak a targyalasbal.
Példaul:

£ =(x, —xM)2 +yl == (x—l-singo—x)2 +(l-c0sgz))2 ~I’=
=" -sin@p+1*-cos’ -1 =1I" -(sin2 @+ cos’ go)—lz =0
A kinetikus (mozgasi) energia:
1
T==M-v; +lm-v,i
2 2
A vm és v, sebességekre Descartes-koordinata rendszerben a Pitagorasz-tétel szerint fennall,

hogy:

2 2 2 .2 .2 2 2 2 .2 .2

Vir = Vi TV =Xy + Vi illetve V=V TV, =X, Y, .

Hasznaljuk az (*) 6sszefliggéseket és végezzik el a derivalasokat, azt kapjuk hogy:
v, =X+, =X +0° =%

illetve

2 2
V=% 4+ :(%(x—l-sin(p)j +(%(l-cos¢)j Z(X—I-COS(/)-¢7)2+(—l-Sin§D-§b)2 =
=x*=2l-cosp-X-p+1*-¢’

igy a mozgasi energia immaron az altalanos koordinatakkal:
1 o1 .
TZE(M+m))'c2 —m-l-cosqp-)'c-(o+5m-l2 @

A potencidlis (helyzeti) energia jelen esetben csak a nehezék gravitacids helyzeti energigja:

14



A mozgatott felfliggesztés(i inga dinamikai és szamitégépes vizsgalata

V=m-g-y =m-g-l-cose

Ezekkel mar felirhatjuk a rendszer L =7 —V Lagrange-fiiggvényét.
Jelen esetben:

L:%(M+m)x2—m-l-COS(p-)'c-giH%m-lz-¢2—m-g-l-cos¢)

Tehat el6allt az inverz inga Lagrange-fliggvénye az x és ¢ altalanos koordinatakkal, valamint
X és ¢ altalanos sebességekkel.

A disszipativ jellegii mozgast akadalyozo er6knek nincs potencialja, de szokas bevezetni
pszeudo potencialt (un. Rayleigh potencialt). Jelen modellben a mozgast akadalyozé (pl.
kbézegellenallasi) erét elsé kdzelitésben elhanyagolhaténak tekintjik,, de a késdbbiekben targyalt
gerjesztett inganal majd utdlag, a mozgasegyenletek szintjén ,kézzel” beillesztjik a surlédasi erét.

Jeldlje F (F FEF, ) a rendszer j-indext elemére haté nem-konzervativ kilsé erék eredéjét,

x> iy
Fl.(xi,yl.,z,.) pedig a hataspont (tamadaspont) helyvektorat. A g, altalanos koordinatahoz rendelt
O, altalanositott er6 definicidja:

N
Qj:Z( nc'_+F ayl FZ%J
J

i=1 j * aq/ aq /

Jelen esetben csak a vizszintes F er6 hat a kocsira, vagyis az x koordinataju pontban, tehat:
E(F,0,0) és 7 (x,0,0),

igy (nem felejtve, hogy a ¢, =x¢ésq, =@):

0=F% 102 0% & _F

0q, 0q, 0q, ox
Ox +0- & +0- c =F- @:O

0,=F.
? 0q, 0q, 0q, op

Mivel két altalanos koordinatank van g, = x €s g, = @, igy kétszer kell felirnunk a

Euler-Lagrange egyenletet, hogy megkapjuk a keresett mozgasegyenleteket.
Tekintsuk el6szor a ¢, = x altalanos koordinatat és végezzik el az el6irt derivalasokat (a teljes
derivaltaknal hasznalva a lancszabalyt).

aL 8L
M+m)x—m-I-cos
8q1 ax ( ) 09
d 6L
M+m)i+m-[l-sin —m-1[-cos
P =( )3 @@ @-¢
8L 8L
6q1 Cox

igy az Euler-Lagrange egyenlet:

.. . .2 .
(M +m)i+m-1-sing-¢* —m-l-cosp-$=F (F2.0)
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Tekintsuk ezutan a g, = ¢ altalanos koordinatat:

oL oL . 2 .
—=—=-m-l-cosp-x+m-1I"-¢
oq, 09
ia_L—m-l-sin X-p—m-l-cosp-X+m-1*>-@
dt 0¢ v v Y
oL oL ) .o .
—=—=m-[-sing-x-¢p+m-g-l-sing
oq, Og

igy az Euler-Lagrange egyenlet ezuttal:
m-l-sing-x-¢p—m-l-cosp-i+m-1>-p—{m-1-sinp-x-¢p+m-g-l-sinp} =0
Egyszerisitések utan:

m-l-p—m-cosp-Xx—m-g-sinp=0 (F.2.b)

Az utobbi egyenletben m tdmeggel még egyszerlsithetnék, de tudatosan nem osztjuk végig,
hogy az egyenlet (F.2.a)-hoz hasonldan eré mértékegységl maradjon.

B. Dimenziétlanitas

Megfeleléen valasztott valtozok segitségével a mértékegységek kitranszformalhatok a
dinamikai egyenletekbdl. Az un. dimenzidtlanitas alapgondolata az, hogy minden rendszernek van
sajat jellegzetes hosszusag- és/vagy idéskalaja. A dimenzidtlanitas egyfelél az egyenletek
numerikus megoldasra alkalmas alakjanak megtalalasaban nagy gyakorlati jelentéségli (a
szamitogéppel végzett numerikus algoritmusok csak szamokkal dolgoznak, nem tudnak
mértékegységeket kezelni!). Masfeldl nagyon mély analégiakra mutat ra, latszélag tavol esé fizikai
rendszerek, problémak kozotti lehetséges kapcsolat felderitését teszi lehetévé. A dimenzidtlan
mozgasegyenletekben ugyanis nem csak a valtozok mértékegység nélkiliek, de a megjelené uj
paraméterek is. Az Uj paraméterek szama kisebb, mint az eredetieké, bar azokbdl kell ,kikeverni”
Oket. Ez kiemeli a latszdélag kuldonbdz6é rendszerek kozotti analdgiat: minden olyan rendszer
id6fejlédése ekvivalens (izomorf), amelyek dimenziétlan paraméterei azonosak, akarmennyire is
eltér6ek az ,eredeti” fizikai paraméterek. H. Poincaré szavaival: ,A matematikai szellem tanit meg
bennlnket arra, hogy felismerjuk az igazi, mély analdgiat, melyet a szem nem lat, csak az ész sejt.
A matematikai nyelv nélkil a dolgok belsé analogiajanak legnagyobb része ismeretlen maradt volna
el6ttiink orokre.”

A tudomanyban altalanos értelemben valamely vizsgalt valés R rendszer modelljének
nevezlink egy realizalt (megépitett) masik M rendszert, amennyiben M rendszer kénnyebben
vizsgalhaté (mérhet6, szabalyozhatd) és M tanulmanyozasa informaciot szolgaltat az eredeti R
rendszerre. A modellezés aspektusaban a dimenzidtlanitas fontos lehetéséget ad a kezlinkbe,
hiszen az izomorf rendszerek (amelyekben tehat a dimenziétlan dinamikai egyenletek és a bennuk
szerepl6 dimenziétlan paraméterek azonosak) alkothatnak eredeti rendszer modell-rendszer part,
ha a modell rendszer kdnnyebben megvaldsithato, vizsgalhato.

Nézzink itt most csak egyetlen példat, a gyakorlati életben fontos aramlastan terdletérél. A
cseppfolyos és légnemi kozeg aramlasat az un. Navier-Stokes-egyenletrendszer irja le, amely
matematikai szempontbél nagyon bonyolult nemlinearis csatolt parcidlis differencialis
egyenletrendszer. A dimenzibtlanitas soran megjelend dimenzidtlan paraméterek:

2
Reynolds-szam: Re = v_pl Froude-szam: Fr = /v_l , Rossby-szam: Ro = L,
g

n 2wl

ahol / a rendszer jellemz6 mérete, p, n és v az aramlo kozeg sirlisége, dinamikai viszkozitasa
és sebessége, g a lokalis gravitacios gyorsulas, és amennyiben nem elhanyagolhaté forgasu
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vonatkoztatasi rendszerben vagyunk (pl. a Fold nagy |éptékli aramlasai), akkor w a forgas
szdgsebessege.

A praktikus, dimenziotlanitott mennyiségek megvalasztasa és a Iényeges dimenzittlan
szamok azonositasa az adott aramlastani probléma modellezésének alapveté mozzanata, példaul
jarmivek (gépkocsik, hajok, repulégépek) tervezésekor. A prototipus és modell viszonylataban csak
a Re Reynold-szamok azonossaga kovetelmény, ha az aramlo kdzeg a vizsgalt objektumot teljesen
korllveszi, amennyiben nem veszi teljesen koéril, akkor a Fr Froude-szamok azonossaga is
megkovetelendd (ekkor a gravitacios er6 is fontossa valhat).

13.. abra: gépkocsi modell tesztelése vizcsatornaban

Példaul gépkocsik karosszériajanak tesztelésekor az Fc kdzegellenallasi erbkre teljesul, hogy:

F F,

ep e

2 ) 2
VP, VP,

vpl /
ha a Repzﬁ és Remzv’”pﬂ Reynolds-szamok azonos értékiiek (p index a
n, N

prototipust, m index pedig a modellt jeldli).
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