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 Összefoglalás 
Érdekes, sokféleképpen megjelenő mechanikai rendszer a 
mozgatott felfüggesztésű inga. A mozgásegyenleteket a 
Lagrange-formalizmussal vezetjük le. Dinamikai szempontból a 
rángatott inga egy gerjesztett disszipatív rendszer és a 
mozgáspálya számítógépes szimulációjával látni fogjuk, hogy 
általános esetben kaotikus mozgás jön létre, ezen keresztül 
mutatjuk be a káosz jellemzőit. 

Abstract 
An interesting mechanical system with many different forms is 
the mobile suspension pendulum. The equations of motion are 
derived from the Lagrangian formalism. From a dynamical point 
of view, the twitched pendulum is an excited dissipative system 
and by computer simulation of the trajectory we will see that in 
general a chaotic motion is generated, through which the 
characteristics of chaos are demonstrated. 

1. Bevezetés 

Érdekes, sokféleképpen megjelenő mechanikai rendszer a mozgatott felfüggesztésű inga. Ez 
olyan inga, amelynek nem rögzített a forgáspontja, hanem egy egyenes (esetleg görbe) mentén 
mozgatható. Ilyen ingával a gyakorlati élet számos területén találkozhatunk. 

   

1. ábra: gyakorlati példák a rángatott felfüggesztésű ingára 

Egy másik fontos és széles körben megjelenő változata a mozgatott tartópontú ingának az ún. 
inverz inga, amely lényegében egy alul megtámasztott rúd, amelynek alátámasztási pontját 
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vízszintesen mozgatjuk, ez esetben az egyensúly fenntartásához szükséges vezérlés a lényegi 
gyakorlati vonatkozás. 

     

2. ábra: inverz inga példák 

Dinamikai leírás szempontjából az inverz inga a bonyolultabb, így érdemes a tárgyalást ezzel 
kezdeni, mivel abból már a „közönséges” inga mozgásegyenletei egyszerűbb modellként 
megkaphatók. Az inverz inga mozgásegyenleteit a Lagrange-formalizmussal vezetjük le, melyből 
speciális esetként származtatjuk a vízszintesen, illetve függőlegesen periodikusan rángatott 
felfüggesztésű inga mozgásegyenleteit. Röviden kitérünk az inverz inga egyensúlyi vezérlésének 
problémájára, majd igen érdekes jelenségként a függőlegesen rángatott inga (más néven Kapitza-
inga) önvezérlő egyensúlyára. Dinamikai szempontból a rángatott inga gerjesztett disszipatív 
rendszer és a mozgáspálya számítógépes szimulációjával látni fogjuk, hogy általános esetben igen 
bonyolult mozgásforma jön létre; a mozgás kaotikus. Megmutatjuk, hogy tranziens és permanens 
káosz is kialakulhat. A káosz jellemzőit számítógépes modellen tanulmányozzuk, megkonstruáljuk 
a kaotikus attraktor stroboszkopikus (Poincaré) térképét, a kezdeti feltételekre való érzékenységet 
fáklya-diagramon demonstráljuk, az előrejelzési idő alapján becslést adunk a Ljapunov-exponensre 
és szemléltetjük a kaotikus attraktor fraktál jellegét. 

2. Dinamikai tárgyalás 

Kezdjük a bonyolultabb rendszerrel, tehát az inverz ingával, amelyből egyszerűsítésekkel 
megkaphatjuk a kényszerfeltétellel mozgatott inga leírását is. 

A leggyakoribb műszaki megvalósításban a súlytalannak tekinthető l hosszúságú ingarúd 
végére m tömegű test van erősítve, a rúd alsó vége pedig csuklósan csatlakozik az M tömegű mozgó 
kocsira  (lásd a 3. ábrán). A kocsi mozgását megfelelően választott F erővel szabályozzuk, amely 
ebben a formában izgalmas szabályozási probléma. 

 

3. ábra: inverz inga modell 

Kétféle úton is eljuthatunk a mozgásegyenletekhez: a jól ismert Newtoni megközelítéssel, 
illetve a Lagrange-formalizmusban. Jelen tanulmányban az utóbbi alapján végezzük el a tárgyalást, 
két okból is. Egyrészt a Lagrange-formalizmus gondolati tisztaságában és matematikai 
eleganciájában szinte már művészeti alkotásként tekinthető, Hamilton véleménye szerint 
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„tudományos költészet” („a scientific poem”). Másrészt fontos tanulság, hogy összetettebb 
mechanikai rendszer esetén hatékonyabb a Lagrange-féle metódus, mint a newtoni leírás. 

A részletes tárgyalást a cikk jobb áttekinthetősége érdekében a Függelékben írjuk le, a 3. ábra 
szerinti jelöléseket használva. 

Azt kapjuk, hogy az inverz inga mozgásegyenletei (a Függelék (F.2.a) és (F.2.b) képletei): 

  ( ) 2sin cosM m x m l m l F   + +    −    =  (2.1.a) 

 cos sin 0  −   −   = m l m x m g    (2.1.b) 

Az utóbbi egyenletben az m tömeggel egyszerűsíthetnék, de tudatosan nem tesszük meg, 
hogy az egyenlet (2.1.a)-hoz hasonlóan erő mértékegységű maradjon (ennek hasznosságát később 
látni fogjuk). 

A standard formátumra alakításhoz rendezzük ki belőlük a másodrendű deriváltakat: 

   

( )

( ) ( )
( )

2

2

2

2

sin cos sin

cos

sin sin cos

cos

+   −  
=

+ − 

+   + −   
=

+ −  







F mg ml
x

M m m

M m g F ml

M m m l

   



   



  (2.2.) 

A rángatott inga mozgásegyenletét már könnyen megkaphatjuk a fenti egyenletek speciális 
eseteként. Az irodalomban szokásos jelölések érdekében térjünk át a szögváltozó tekintetében a 3. 
ábrán jelölt szögről a 4. ábrán felvett szögre. 

 

4. ábra 

Használjuk a  +    helyettesítést, amellyel (2.1.a), illetve (2.1.b) az alábbi alakú lesz: 

 ( ) 2sin cos+ −    +    =M m x m l m l F     (2.3.a) 

 cos sin 0  +   +   = m l m x m g    (2.3.b) 

Dinamikai szempontból egyszerűbb speciális eset, ha az ( );F Fx y  felfüggesztési pont 

mozgását kényszerfeltételként szabjuk meg. Ekkor tehát ( ) ( ) és F Fx t y t  adott függvények (míg 

M = 0 és F = 0). 

Vízszintes egyenesen periodikusan rángatott inga esetén ( ) ( )
2

sin  , 0
 

=  = 
 

F Fx t A t y t
T


, 

ami könnyen visszavezethető az inverz inga tárgyalására, hiszen (F.1.) képletekben látható, hogy 
az x koordináta a kocsi koordinátája, tehát az inga forgáspontjának koordinátája 

( ) ( ) ( )
2

sin
 

= = =   
 

M Fx t x t x t A t
T


. 

Kényszerfeltétel esetén (2.3.a) mozgásegyenlet eliminálható, hiszen a felfüggesztési pont 
mozgása a kényszer miatt előírt időfüggésű, tehát csak a második mozgásegyenlet marad: 
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2
2 2

cos sin sin 0
   

  −     +   =   
   

m l m A t m g
T T

 
  

, 

ahol felhasználtuk, hogy: 

2
2 2

sin
   

= −     
   

x A t
T T

 

. 

A realisztikus leírás érdekében illesszünk be a mozgásegyenletbe a sebességgel arányos, 

mozgást akadályozó („súrlódási”) ( )=  =  
sF c v c l  erőtagot (e lépésben hasznos, hogy az 

egyenlet erő mértékegységű!): 

( )
2

2 2
cos sin sin 0

   
  −     +   +  =   

   
m l m A t m g c l

T T

 
   

 

A szöggyorsulásra rendezve a vízszintesen periodikusan rángatott inga mozgásegyenlete: 

 

2
2 2

sin cos sin
   

=    −  −    
   


A g c

t
l T T l m

 
   

 (2.4.) 
 

Függőleges egyenesen periodikusan rángatott inga esetén ( ) ( )
2

0 , sin
 

= =   
 

F Fx t y t A t
T


. 

Ekkor sajnos nem használhatjuk közvetlenül az inverz ingára kapott eredményeket, mivel ott a 
felfüggesztési pont vízszintesen mozgott, itt pedig függőlegesen, tehát (F.1) helyett most: 

0

2
sin

sin

2
sin cos

=


  =     


= − 
  

=  +   
 

M

M

m

m

x

y A t
T

x l

y A t l
T








 

Ismét végig kell hát vezetni a Függelékben megismert Lagrange-formalizmust, melyet nem 
részletezünk, végül a függőlegesen periodikusan rángatott inga mozgásegyenlete: 

 

2
2 2

sin sin sin
   

=  −    −    
   


g A c

t
l l T T m

 
   

 (2.5.) 
 

A (2.2), a (2.4), illetve a (2.5) mozgásegyenletekkel megkaptuk az inverz inga, a vízszintesen 
periodikusan rángatott inga, illetve a függőlegesen periodikusan rángatott inga matematikai 
modelljét, az alábbiakban ezek alapján vizsgálhatjuk őket. 

3. Az inverz inga vezérlése 

Az inverz inga vezérélésre csak áttekintő módon térünk ki, mivel nem ez a fő gondolati 
irányunk és az irodalomban széleskörűen tárgyalt, lásd például [1]. 

A Lagrange-formalizmusban a leíráshoz bevezettük a 1 2 és q x q = =  általános 

koordinátákat. Az inverz inga (2.2.) mozgásegyenletei másodrendű differenciálegyenletek, amelyek 

a 3 = = q v x  sebesség és az 4 = = q    szögsebesség változók bevezetésével elsőrendű 

differenciálegyenlet-rendszerré alakíthatók: 
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( )

( ) ( )
( )

2

2

2

2

sin cos sin

cos

sin sin cos

cos

= 


=

+   −  
=
+ − 

+   + −   
=
+ −  










x v

F mg ml
v

M m m

M m g F ml

M m m l

 

   



   



. 

A kapott elsőrendű differenciálegyenlet-rendszert írjuk át a 

1

2

3

4

 
 
 =
 
  
 



q

q
q

q

q

 változókat (általános 

koordinátákat és általános sebességeket) használva: 

( )=
q f q

, (3.1.a) 

ahol: 

( )

( )

( )

( )
( )

( )
( )

( )

1 1 2 3 4 3

2 1 2 3 4 4
1

2

2 2 2 42
3 1 2 3 4 2

23

2
4 2 2 4 2 2

4 1 2 3 4 2

2

, , ,

, , ,

sin cos sin
, , ,  és   

cos

cos sin sin cos
, , ,

cos

 =


= 
 

+   −  
  == =
  + − 
  

 + +   −    
=

+ −  









f q q q q q

f q q q q qq

F mg q q ml q qq
f q q q qq f q

M m m qq

q F q M m g q ml q q q
f q q q q

M m m q l






 
 
 
 
 
 

 . 

A realisztikus leírás érdekében illesszünk be itt is a kocsi sebességével arányos, mozgást 

akadályozó („súrlódási”) 
3= −  = −  = −

sF c v c x cq  erőtagot a gyorsulásokat megadó f3 és f4 képletbe 

(e lépésben fontos, hogy mindkét képlet számlálója erő mértékegységű!), tehát az ( )3 − F F c q  

helyettesítéssel: 

( )

( )

( )

( )
( )

( )

( )
( ) ( )

1 1 2 3 4 3

2 1 2 3 4 4
1

2

3 2 2 2 42
3 1 2 3 4 2

23

2
4

3 2 2 4 2 2

4 1 2 3 4

, , ,

, , ,

sin cos sin
, , ,  és   

cos

cos sin sin cos
, , ,

cos

=

= 
  −  +   −  
  == =
  + − 
  
  −   + +   −   

=
+ − 








f q q q q q

f q q q q qq

F c q mg q q ml q qq
f q q q qq f q

M m m qq

q F c q q M m g q ml q q q
f q q q q

M m m( )2

2

 
 
 
 
 
 
 
 
 
 
 

q l
(3.1.b) 

Az inverz inga felső egyensúlyi helyzetben tartásának vezérléséhez linearizáljuk a fenti 

mozgásegyenleteket a 


feq  felső egyensúlyi helyzet körül: 

2
 , ahol  tetszőleges valós és  tetszőleges egész szám,

0

0

 
 
 =
 
 
 



e

fe e

x

n
q x n


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tehát: 


= 






feq

d q
Df q

dt
, (3.2) 

ahol  = −


feq q q  és 


feq

Df  az ( ) 
 
f q  vezérlőfüggvény-vektor Jacobi-mátrixa a 


feq  felső egyensúlyi 

állapot értéknél, azaz: 

1 1 1 1

1 2 3 4

2 2 2 2

1 2 3 4

3 3 3 3

1 2 3 4

4 4 4 4

1 2 3 4

    
 
    

 
    

    
 

=  
    

    
 
    
 
    

 

 

 



 

 

fe fe fefe

fe fe fefe

fe

fe fe fefe

fe fe fefe

q q qq

q q qq

q

q q qq

q q qq

f f f f

q q q q

f f f f

q q q q
Df

f f f f

q q q q

f f f f

q q q q
 (3.3) 

A vezérlés tehát az F erőn keresztül történik, amelyet a gyakorlati megvalósításokban az alábbi 
alakban szoktak felvenni: 

( ) 3=   − 
 

F t k q q 
, 

ahol az első tag hordozza a pillanatnyi 

q  állapottól függő (lineáris) visszacsatolást, a második tag a 

sebességtől függő ellenállási tagot. A 

k  csatolási vektor a (3.2) és (3.3) formula alapján 

optimalizálható (a (3.3) mátrix konkrét kiszámítása igen fáradtságos munka), míg az α és β konstanst 
empirikus tapasztalat alapján lehet becsülni. Az inga konkrét megvalósítása látható például a [2] 
videón. 

4. Függőlegesen rángatott inga 

Tárgyalásunkat a függőlegesen periodikusan rángatott ingával (Kapitza-inga néven is ismert) 
folytatjuk, mert amint látni fogjuk kapcsolódik az inverz inga felső egyensúlyi helyzetben tartásához. 

(2.5) formula megadja a mozgásegyenletet: 

 

2
2 2

sin sin sin
   

=  −    −    
   


g A c

t
l l T T m

 
   

 (4.1) 

A Függelék B. részében beszélünk a dimenziótlanítás jelentőségéről és metódusáról. Jelen 
modellben a rángatás T periódus-idejének felhasználásával a  t t T  helyettesítéssel áttérhetünk 

dimenziótlan t időváltozóra, amellyel (4.1.) a következő alakú lesz (az idő szerinti deriváltakban is el 
kell végezni a helyettesítést!): 

( )sin sin 2 sin=  −   − G R t C    
, (4.2.) 

amelyben: 

( )
2

2=
A

R
l


, 

2

=
gT

G
l  és 

=
cT

C
m  (4.3.) 

dimenziótlan konstansok. 
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Vegyük észre, hogy a rángatott ingát jellemző „eredeti” 6 (l, m, g, c, A, T) mértékegységes 
paraméter helyett csupán az ezekből előálló 3 (R, G, T) mértékegység nélküli paraméter marad. Ez 
praktikusan azt jelenti, hogy minden olyan inga, amely bár az „eredeti” paramétereiben különbözik, 
de a három dimenziótlan paramétere azonos, dinamikai szempontból tökéletesen azonos 
viselkedést mutat. 

A dimenziótlan mozgásegyenlet numerikus szimuláció szempontjából is kedvező, hiszen a 
számítógép csak számokkal tud dolgozni, mértékegységekkel nem. A megvalósított szimulációs 
program (lásd pl. [3]) meglepő jelenséget mutat: bizonyos paraméterértékek mellett az inga 
„magától”, tehát szabályzó visszacsatolás nélkül is megmarad a felső instabil egyensúlyi állapotban. 
A dinamikus egyensúlyi feltétele: 

( )

( )

2 2 2

22

3 2 3
1

4 4 2


 =  
  

A R

l g T G




 (4.4) 

A szimulációs programmal igazán jól el lehet kísérletezgetni. Gyakorlatilag megvalósított, 
például Lego Technic segítségével épített Kapitza-inga nézhető a [4] videón. 

5. Vízszintesen rángatott inga kaotikus tulajdonságainak számítógépes 
vizsgálata 

Már levezettük a (2.4.) formulával adott mozgásegyenletet: 

 

2
2 2

sin cos sin
   

=    −  −    
   


A g c

t
l T T l m

 
   

 (5.1.) 

Az előző fejezetben tárgyalt dimenziótlanítással ezúttal kapjuk, hogy:  

( )sin 2 cos sin=   −  − R t G C    
, (5.2.) 

amelyben a már bevezetett: 

( )
2

2=
A

R
l


, 

2

=
gT

G
l  és 

=
cT

C
m  (5.3.) 

dimenziótlan konstansok. 

Bevezetve =    szögsebesség változót, (5.2.)-t elsőrendű differenciálegyenlet-rendszerré 

alakítjuk: 

( )sin 2 cos sin

= 


=   −  −  



 R t G C

 

    
 (5.4.) 

A fenti (csatolt) nemlineáris differenciálegyenlet-rendszert nem lehet „kézzel” analitikusan 
megoldani, tehát numerikus módszerekkel, számítógép segítségével végezzük a vizsgálatokat, 
ezért a káoszelmélet a számítógépes kísérleti fizika egyik legfontosabb területe. Ez azonban 
alapvetően programozói kompetenciákat tételez fel, ami sokak számára nem kis kihívás. Éppen 
ezért tartjuk nagyon kiemelendőnek és ajánljuk oktatási és kutatási célra egyaránt a Dynamics 
Solver programot, amely szabadon letölthető és tetszőleges dinamikai rendszerek szimulációjára 
alkalmas, roppant felhasználóbarát és nem szükséges programozói tudás a használatához. Azon 
Olvasók számára, akik az alább bemutatott szimulációkat saját maguk ki szeretnék próbálni, ajánljuk 
az [5] linken letölthető (ZIP fájlba csomagolt) bemutató anyagot, amely az ELTE Doktori Iskolája 
számára készült (a kaosz_num_DS_elektronikus_tananyag_NP\DS\dslvr198-64.exe fájllal 
telepíthető a Dynamics Solver program). A továbbiakban a Dynamics Solver (DS) programmal 
dolgozunk. Egy már kész *.ds probléma-fájl legalapvetőbb szintű használathoz szükséges funkciók: 

a futtatás a  ikonnal, a megállítás a  ikonnal, a folytatás a  ikonnal, a grafikus ablakok 
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törlése (akár futás közben is!) a  ikonnal, a paraméter-tábla megjelenítése a  ikonnal, a 

kezdetifeltétel-tábla megjelenítése pedig a  ikonnal történik. 
 

A DS-ben megírt szimulációs program tipikus pályája látható az 5. ábrán. 

 

5. ábra: a súrlódásos vízszintesen periodikusan rángatott inga végpontjának kaotikus pályája 

Az 5. ábrán látható esetben a kaotikus mozgás végtelen ideig fent marad, ez a permanens 
káosz jelensége. Más paraméter értékek esetén, azonban a kaotikus mozgás csak véges ideig 
történik, bizonyos idő után a mozgás reguláris (pl. periodikus) lesz, ez a tranziens káosz jelensége 
(lásd pl. 6. ábrákon). 

 

6.a. ábra: kaotikus pálya 40= t T  ideig 

 

6.b. ábra: periodikus pálya 40= t T  idő után 
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A káosz egyszerű (kis szabadsági fokú), egyértelmű (determinisztikus) törvényszerűségekkel 
(azaz néhány nemlineáris dinamikai egyenlettel) leírható rendszerek időbeli változása (mozgása), 
lényegi vonásai az alábbiakban foglalhatók össze: 

1. szabálytalan (nem-periodikus, bonyolult) viselkedés, 
2. a kiindulási állapot hibájának rohamos növekedése (a kezdeti feltételekre való 

extrém érzékenység) következtében a gyakorlatban hosszú időtartamra 
előrejelezhetetlen, csak valószínűségi leírás adható, 

3. az időbeli változást teljesen megadó fázistérben a hosszú távú viselkedést egyfajta 
struktúra, rend jellemezi, a fázistérbeli kép (leképezés) fraktálgeometriát mutat. 

Valamely dinamikai rendszer egy időpillanatbeli állapotának egyértelmű megadásához 

szükséges a (minimális számú)  1 2, ,..., nx x x x=  változó által kifeszített n dimenziós absztrakt 

fázistér. A rendszer időfejlődését változóinak ( )x f x=  elsőrendű differenciálegyenlet rendszerével 

adjuk meg: 

( )

( )

( )

1 1 1 2

2 2 1 2

1 2

, ,...,

, ,...,

...

, ,...,

 =


=


 =







n

n

n n n

x f x x x

x f x x x

x f x x x
. (5.5) 

A rendszer állapotát bármely pillanatban a fázistér egy pontja reprezentálja, a rendszer 
időfejlődése során a fázispont által bejárt görbe neve trajektória. 

Jelen modellben bevezetve a 2 = t  fázisváltozót (5.4.) a mozgásegyenleteket (5.5.) 

standard alakú elsőrendű differenciálegyenlet-rendszerré alakítjuk: 

( )sin cos sin

2

=


=    −  −  


 = 







R G C

 

   


 (5.6.) 

Tehát a modell fázistere 3 dimenziós (három dimenzió alatt nem is lehetséges káosz), a káosz 
fenti lényegi vonásainak 1. pontja pedig az 5. és 6. ábrákon szemléletesen tetten érhető. 

A DS segítségével egyszerűen tanulmányozhatjuk a káosz 2. lényegi vonását is, a kaotikus 
rendszer időbeli viselkedésének a kezdeti feltételekre mutatott extrém érzékenységét. Ez azt jeleni, 
hogy a rendszert (ugyanazon paraméter értékek mellett) nagyon közeli kezdőfeltételekből indítva, 
nagyon eltérő időfüggést tapasztalunk, azaz távolról sem teljesül az általában megszokott „kis 
kezdeti hiba, kis eredménybeli eltérés” elv. Az extrém érzékenység legszemléletesebb illusztrálási 
módja az. ún. fáklya-diagram készítése. 

 

7. ábra: szögsebesség-idő fáklyadiagram 
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A fáklya-diagramon a kaotikus rendszer valamely változójának időbeli változását ábrázoljuk, 

több, egymáshoz nagyon közeli kezdőfeltételből indítva. A 7. ábrán szemlélhetjük az ( )t  

szögsebesség időfüggvényét 5 különböző, nagyon közeli φ0 kezdeti kitérésszög érték mellett (a 
rendszer többi változójának kezdeti értéke minden indításnál azonos). Jól látható, hogy a 
szögsebesség időbeli változását megadó görbék egy ideig együtt futnak, majd teljesen szétválnak, 
azaz bizonyos karakterisztikus időtartam (más néven előrejelzési idő) után a nagyon kicsiny 
kezdőértékbeli eltérések teljesen eltérő viselkedéshez vezetnek. 

Az (5.5.) mozgásegyenletekkel adott rendszer  1 2, ,..., nx x x x=  fázispontbeli 

( )1 2, ,..., =    nx x x x  perturbációjának időváltozása: 

( )( )
( )


= 

d x t
Df x t

dt ,  

ahol Df  a már korábban megismert Jacobi-mátrix: 

1 1 1

1 2

1 2

...

. . . .

...

   
   
 
 =
 
   

    

n

n n n

n

f f f

x x x

Df

f f f

x x x
. 

A pályák távolságát megadó ( ) ( ) ( ) ( )2 2 2

1 2 ... =  +  + +  nr t x t x t x t  metrika időfüggése: 

( ) ( )
0

 
 =  

r t
r t r e

, 

ahol 
0r  a kezdőfeltétel távolság, ( ) r  pedig a lokális Ljapunov-exponens, ami függ a kezdőfeltétel 

választásától. A lokális Ljapunov-exponensek átlaga a   Ljapunov-exponens, ami a közeli 

kezdőpontok tipikus távolodási rátáját írja le. Kaotikus rendszerekben a Ljapunov-exponens pozitív, 
tehát exponenciális a pályák távolodása. (Ha a rendszer nem kaotikus, akkor általában a távolodás 
exponenciálisnál lassabb, vagyis a Ljapunov-exponens nem pozitív.) Annyi Ljapunov-exponens 
létezik, ahány változóval leírható a rendszer, vagyis ahány dimenziós a fázistér. A kezdőfeltételekre 
való érzékenységet a legnagyobb Ljapunov-exponens határozza meg. 

A Ljapunov-exponens numerikus meghatározásának egyik lehetősége az előrejelzési idő 
becslésére alapul. 

 

8. ábra: a Ljapunov-exponens meghatározása előrejelzési idő becslés alapján 
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A 
0r  kezdeti távolság és a te előrejelzési idő közötti összefüggés: 

( )0 0

1
ln= −  −et r t

 . (5.7.) 

A metódus tehát: elkészítjük a fáklyadiagramokat különböző 0r  kezdőfeltétel távolságok 

mellett, a diagramokon becsüljük a te előrejelzési időket, majd ábrázoljuk az összetartozó ( 0lnr  ; te 

) értékpárokat, amelyek (5.7.) szerint (közelítőleg) egy egyenesre esnek és az illesztett egyenes 
meredekségének reciprokának mínusz egyszerese adja a Ljapunov-exponenst. 

  

  

  

9. ábra: a periodikusan rángatott inga Ljapunov-exponensének becslése előrejelzési idő alapján 

A 9. ábrán konkrét becslést mutatunk be: 5 (i =0,1,..,4) egymástól nagyon kicsiny (
4

0 2 10 5− =  i

i ) kezdőszög eltéréssel indított szög-idő függést ábrázoló fáklyadiagramot 

rajzoltunk meg, mindegyiken bejelölve a becsült a tei előrejelzési időt. Ábrázolva az összetartozó (

0ln i  ; te i) értékpárokat, majd a pontokra legkisebb négyzetek módszerével egyenest illesztve az 

egyenes meredeksége -0,57 értékűnek adódik, így a Ljapunov-exponens 1,75. 
A fázistér vonzó halmazát, amely felé a trajektóriák hosszú időtávlatban közelednek 

attraktornak nevezzük: 
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• egyszerű attraktor: szabályos (reguláris) mozgásokhoz tartozó attraktorok, fixpont 
attraktor, vagy határciklus attraktor, 

• különös (kaotikus) attraktor: szabálytalan (kaotikus) mozgást végző rendszer fraktál 
geometriájú attraktora. 

Permanens káosz esetén a rendszer fázispontja soha nem hagyja el az attraktort, míg 
tranziens káosznál a trajektória csak véges ideig marad a kaotikus attraktor közelében. 

Poincaré térkép (-leképezés): a trajektóriának csak egy kiválasztott felületet átdöfő (adott 
altérbe eső) metszéspontjait ábrázoljuk, melyek diszkrét pontsorozatot alkotnak. A gerjesztett 
rendszerek esetén használt ún. stroboszkópikus leképezés speciális Poincaré-leképezés, amely a 
trajektória gerjesztési periódusidőnként (azaz állandó fázisértékeknél) vett mintájaként kapott 
pontsorozat. 

A 10. ábrán a vízszintesen rángatott súrlódásos inga stroboszkopikus leképezése látható az 
R = 33,55, G = 9,81 és C = 1 paraméterek mellett. 

 

10. ábra: a rángatott inga stroboszkópikus leképezése a szög-szögsebesség fázissíkban 

Ezen keresztül jól szemléltethetjük a fentebb felsorolt káoszjellemzők 3. vonását, vagyis a 
hosszú távú viselkedést megjelenítő fázistérbeli attraktor fraktálgeometriáját. A fraktálok egyik 
lényegi vonása az önhasonlóság azaz, hogy felnagyítva egy részletüket az eredetivel azonos 
struktúra jelenik meg. 

 

 

11. ábra: fraktálok önhasonló (skálainvariáns) jellege 
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A szimulációt a 10. ábra paraméterértékei mellett futtatva a 11. ábrán látható kinagyítás 
sorozatot elvégezve nagyon szépen szemlélhető az önhasonló jelleg: a kaotikus attraktor ún. 
Cantor-szál típusú fraktálgeometriája. 

 

12. ábra: a kaotikus attraktor fraktálgeometriájának önhasonlósági jellege 

6. Következtetések 

Jelen cikk összefoglaló jellegű: egy érdekes, a gyakorlatban igen sokrétűen megjelenő mechanikai 
rendszernek, a mozgatott felfüggesztésű ingának tárgyalását tekinti át. Egyfelől didaktikusan 
bemutatja az ilyen típusú rendszerek dinamikai leírását (Lagrange-formalizmusban), másfelől a 
kapott mozgásegyenletekkel leírható modellek vizsgálatát saját számítógépes szimulációk alapján. 
Ezen szimulációkra támaszkodva szemléletes áttekintő képet ad a kaotikus rendszerek lényegi 
sajátosságairól. 

 

Függelék 
 

A. Az inverz inga mozgásegyenleteinek levezetése Lagrange-formalizmusban 

Az alábbiakban a 3. ábra jelöléseit használjuk.  
A mozgásegyenletek levezetése az: 

 
− =

  i

i i

d L L
Q

dt q q
 

Euler-Lagrange egyenletek alapján történik (lásd pl. [6], [7], [8]), ahol L T V= −  a rendszer 

Lagrange-függvénye, iq  az i-ik általános koordináta, iQ  az általánosított erő i-ik komponense. Az 

egyenlet pontos jelentését az inga mozgásegyenleteinek tárgyalása során részletesen elemezzük. 
Az inverz inga mozgása két-dimenziós (függőleges síkban történik), tehát D = 2. Az inga két 
tömegpontból (pontszerűnek tekinthető anyagi objektumból) áll: az M tömegű „kocsi” és az m 
tömegű „nehezék” alkotja. Tehát N = 2. 

Ennek alapján Descartes-koordináta rendszerben 2*2 = 4 koordinátára van szükség: az M 
tömegű „kocsi” helyét megadó xM és yM koordinátákra, illetve az m tömegű „nehezék” helyét megadó 
xm és ym koordinátákra. 

A mozgásra kényszerfeltételek vonatkoznak, azaz előírások a koordinátákra. 
Egyrészt a kocsi az x-tengelyen mozog, tehát az y koordinátája mindig nulla, tehát az első 

feltételi egyenlet: 

 
( )1

0Mf y= =
 . 
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Másrészt kocsi és a nehezék távolsága mindig l, tehát a Pitagorasz-tétel szerint (nullára 
rendezve): 

( ) ( )
22 2 2 0m M mf x x y l= − + − =

 

Tehát s = 2 a kényszerfeltételek száma. 

Ezek alapján már meghatározható a rendszer szabadsági fokainak a száma: 

2 2 2 2f N D s=  − =  − =  

Tehát elegendő csak 2 megfelelően választott általános koordináta a 4 Descartes-koordináta 
helyett. 

Szembeötlő, hogy jelen esetben érdemes a kocsi x = xM koordinátáját és a rúd függőlegessel 
bezárt   szögét választani, hiszen ez a két adat mindkét test helyét egyértelműen definiálja. 

Legyenek tehát 1 2 és q x q = =  a választott általános koordináták. 

Fejezzük ki ezekkel a „eredeti” Descartes-koordinátákat: 

0

sin

cos

M

M

m

m

x x

y

x x l

y l





=


=


= − 
 =   (F.1.) 

Lényeges, hogy az általános koordináták megfelelő választásával a feltételi függvények 
azonossággá alakulnak, így eliminálódnak a tárgyalásból. 

Például:  

( ) ( ) ( ) ( )

( )

2 2 22 2 2 2

2 2 2 2 2 2 2 2 2

sin cos

      sin cos sin cos 0

m M mf x x y l x l x l l

l l l l l

 

   

= − + − = −  − +  − =

=  +  − =  + − 
 

A kinetikus (mozgási) energia: 

2 21 1

2 2
M mT M v m v=  + 

 

A vM és vm sebességekre Descartes-koordináta rendszerben a Pitagorasz-tétel szerint fennáll, 
hogy: 

2 2 2 2 2

M Mx My M Mv v v x y= + = +
, illetve 

2 2 2 2 2

m mx my m mv v v x y= + = +
. 

Használjuk az (*) összefüggéseket és végezzük el a deriválásokat, azt kapjuk hogy: 

2 2 2 2 2 20M M Mv x y x x= + = + =
,  

illetve  

( ) ( ) ( ) ( )
2 2

2 22 2 2

2 2 2

sin cos cos sin

   2 cos

m m m

d d
v x y x l l x l l

dt dt

x l x l

     

  

   
= + = −  +  = −   + −   =   

   

= −    + 




 

Így a mozgási energia immáron az általános koordinátákkal: 

( ) 2 2 21 1
cos

2 2
T M m x m l x m l  = + −     +  

 

A potenciális (helyzeti) energia jelen esetben csak a nehezék gravitációs helyzeti energiája: 
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cosmV m g y m g l =   =   
 

Ezekkel már felírhatjuk a rendszer L T V= −  Lagrange-függvényét. 

Jelen esetben: 

( ) 2 2 21 1
cos cos

2 2
L M m x m l x m l m g l   = + −     +   −   

 

Tehát előállt az inverz inga Lagrange-függvénye az x és   általános koordinátákkal, valamint 

x és  általános sebességekkel. 

A disszipatív jellegű mozgást akadályozó erőknek nincs potenciálja, de szokás bevezetni 
pszeudo potenciált (ún. Rayleigh potenciált). Jelen modellben a mozgást akadályozó (pl. 
közegellenállási) erőt első közelítésben elhanyagolhatónak tekintjük,, de a későbbiekben tárgyalt 
gerjesztett ingánál majd utólag, a mozgásegyenletek szintjén „kézzel” beillesztjük a súrlódási erőt. 

Jelölje ( ), ,i ix iy izF F F F


 a rendszer i-indexű elemére ható nem-konzervatív külső erők eredőjét, 

( ), ,i i i ir x y z


 pedig a hatáspont (támadáspont) helyvektorát. A 
jq  általános koordinátához rendelt 

jQ  általánosított erő definíciója: 

1

N
i i i

j ix iy iz

i j j j

x y z
Q F F F

q q q=

   
=  +  +  

    


 

Jelen esetben csak a vízszintes F erő hat a kocsira, vagyis az x koordinátájú pontban, tehát: 

( )1 ,0,0F F


 és ( )1 ,0,0r x


, 

így (nem felejtve, hogy  a 1 2 és q x q = = ): 

1

1 1 1

0 0
x y z x

Q F F F
q q q x

   
=  +  +  =  =

   
 

2

2 2 2

0 0 0
x y z x

Q F F
q q q

   
=  +  +  =  =

   
. 

Mivel két általános koordinátánk van 1 2 és q x q = = , így kétszer kell felírnunk a 

 
− =

  i

i i

d L L
Q

dt q q
 

Euler-Lagrange egyenletet, hogy megkapjuk a keresett mozgásegyenleteket. 

Tekintsük először a 1q x=  általános koordinátát és végezzük el az előírt deriválásokat (a teljes 

deriváltaknál használva a láncszabályt). 

( )
1

cos
L L

M m x m l
q x

 
 

= = + −   
 




 

( ) 2sin cos
d L

M m x m l m l
dt x

   


= + +    −   



  

1

0
L L

q x

 
= =

 
 

Így az Euler-Lagrange egyenlet: 

( ) 2sin cosM m x m l m l F   + +    −    =
 (F.2.a) 
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Tekintsük ezután a 2q =  általános koordinátát: 

2

2

cos
L L

m l x m l
q

 


 
= = −    +  

 



 

2sin cos
d L

m l x m l x m l
dt

   



=     −    +  





 

2

sin sin
L L

m l x m g l
q

  


 
= =     +   

 
  

Így az Euler-Lagrange egyenlet ezúttal: 

 2sin cos sin sin 0m l x m l x m l m l x m g l          −    +   −     +    =
 

Egyszerűsítések után: 

cos sin 0  −   −   = m l m x m g    (F.2.b) 

Az utóbbi egyenletben m tömeggel még egyszerűsíthetnék, de tudatosan nem osztjuk végig, 
hogy az egyenlet (F.2.a)-hoz hasonlóan erő mértékegységű maradjon. 

 
B. Dimenziótlanítás 

Megfelelően választott változók segítségével a mértékegységek kitranszformálhatók a 
dinamikai egyenletekből. Az ún. dimenziótlanítás alapgondolata az, hogy minden rendszernek van 
saját jellegzetes hosszúság- és/vagy időskálája. A dimenziótlanítás egyfelől az egyenletek 
numerikus megoldásra alkalmas alakjának megtalálásában nagy gyakorlati jelentőségű (a 
számítógéppel végzett numerikus algoritmusok csak számokkal dolgoznak, nem tudnak 
mértékegységeket kezelni!). Másfelől nagyon mély analógiákra mutat rá, látszólag távol eső fizikai 
rendszerek, problémák közötti lehetséges kapcsolat felderítését teszi lehetővé. A dimenziótlan 
mozgásegyenletekben ugyanis nem csak a változók mértékegység nélküliek, de a megjelenő új 
paraméterek is. Az új paraméterek száma kisebb, mint az eredetieké, bár azokból kell „kikeverni” 
őket. Ez kiemeli a látszólag különböző rendszerek közötti analógiát: minden olyan rendszer 
időfejlődése ekvivalens (izomorf), amelyek dimenziótlan paraméterei azonosak, akármennyire is 
eltérőek az „eredeti” fizikai paraméterek. H. Poincaré szavaival: „A matematikai szellem tanít meg 
bennünket arra, hogy felismerjük az igazi, mély analógiát, melyet a szem nem lát, csak az ész sejt. 
A matematikai nyelv nélkül a dolgok belső analógiájának legnagyobb része ismeretlen maradt volna 
előttünk örökre.” 

A tudományban általános értelemben valamely vizsgált valós R rendszer modelljének 
nevezünk egy realizált (megépített) másik M rendszert, amennyiben M rendszer könnyebben 
vizsgálható (mérhető, szabályozható) és M tanulmányozása információt szolgáltat az eredeti R 
rendszerre. A modellezés aspektusában a dimenziótlanítás fontos lehetőséget ad a kezünkbe, 
hiszen az izomorf rendszerek (amelyekben tehát a dimenziótlan dinamikai egyenletek és a bennük 
szereplő dimenziótlan paraméterek azonosak) alkothatnak eredeti rendszer modell-rendszer párt, 
ha a modell rendszer könnyebben megvalósítható, vizsgálható. 

Nézzünk itt most csak egyetlen példát, a gyakorlati életben fontos áramlástan területéről. A 
cseppfolyós és légnemű közeg áramlását az ún. Navier-Stokes-egyenletrendszer írja le, amely 
matematikai szempontból nagyon bonyolult nemlineáris csatolt parciális differenciális 
egyenletrendszer. A dimenziótlanítás során megjelenő dimenziótlan paraméterek: 

Reynolds-szám: Re
v l

=


, Froude-szám: 
2v

Fr
gl

= , Rossby-szám: 
2

v
Ro

l
=


, 

ahol l a rendszer jellemző mérete, ρ, η és v az áramló közeg sűrűsége, dinamikai viszkozitása 
és sebessége, g a lokális gravitációs gyorsulás, és amennyiben nem elhanyagolható forgású 
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vonatkoztatási rendszerben vagyunk (pl. a Föld nagy léptékű áramlásai), akkor ω a forgás 
szögsebessége. 

A praktikus, dimenziótlanított mennyiségek megválasztása és a lényeges dimenziótlan 
számok azonosítása az adott áramlástani probléma modellezésének alapvető mozzanata, például 
járművek (gépkocsik, hajók, repülőgépek) tervezésekor. A prototípus és modell viszonylatában csak 
a Re Reynold-számok azonossága követelmény, ha az áramló közeg a vizsgált objektumot teljesen 
körülveszi, amennyiben nem veszi teljesen körül, akkor a Fr Froude-számok azonossága is 
megkövetelendő (ekkor a gravitációs erő is fontossá válhat). 

 

13.. ábra: gépkocsi modell tesztelése vízcsatornában 

Például gépkocsik karosszériájának tesztelésekor az Fe közegellenállási erőkre teljesül, hogy: 

2 2 2 2

p m
e e

p p p m m m

F F

v l v l
=

 
, 

ha a Re
p p p

p

p

v l
=


 és Re m m m

m

m

v l
=


 Reynolds-számok azonos értékűek (p index a 

prototípust, m index pedig a modellt jelöli). 
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