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 Abstract 
Autoencoders have become a fundamental tool in unsupervised 
learning, addressing various challenges such as dimensionality 
reduction, denoising, anomaly detection, and generative 
modeling. At their core, autoencoders consist of an encoder that 
compresses input data into a lower-dimensional representation 
and a decoder that reconstructs the original input. While standard 
autoencoders are effective for feature extraction, they suffer from 
generalization issues, leading to the development of specialized 
variants. 
This paper provides an overview of several autoencoder types, 
including Denoising Autoencoders (DAEs) that enhance 
robustness against noise, Variational Autoencoders (VAEs) that 
introduce probabilistic modeling, Sparse Autoencoders that 
enforce feature selectivity, Contractive Autoencoders (CAEs) 
that ensure stability against small input changes, Adversarial 
Autoencoders (AAEs) that integrate generative adversarial 
training, Convolutional Autoencoders (CAEs) optimized for 
image processing, and Sequence-to-Sequence Autoencoders 
designed for sequential data. Each variant offers unique 
advantages for specific machine learning tasks. Additionally, 
compression was implemented using vanilla and convolutional 
autoencoders, and the results were evaluated. These 
autoencoder types were chosen because they are widely used in 
compression. 

1 Introduction 

In recent years, autoencoders have emerged as a foundational component in unsupervised and self-
supervised learning, playing a pivotal role in tasks such as dimensionality reduction, denoising, 
anomaly detection, and generative modeling [1]. Originally introduced as a simple neural network 
architecture that learns to reconstruct its input through a compressed latent representation, 
autoencoders have evolved into a diverse family of models tailored to handle a variety of data types, 
constraints, and learning objectives. 
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At the heart of every autoencoder lies a dual-stage architecture: an encoder that compresses 
input data into a low-dimensional latent space, and a decoder that reconstructs the input from this 
compact representation. The reconstruction objective forces the model to capture the most salient 
features of the data, making autoencoders effective tools for feature learning. However, as the 
complexity of data and tasks has increased, the need for more specialized autoencoder variants also 
appeared. 

To address limitations of the basic autoencoder such as poor generalization, overfitting, or 
inability to model probabilistic distributions researchers have developed a wide range of autoencoder 
types. These include denoising autoencoders (DAEs), which improve robustness by learning to 
reconstruct clean inputs from noisy versions; variational autoencoders (VAEs), which incorporate 
probabilistic inference and have become central to generative modeling; sparse and contractive 
autoencoders, which enforce constraints to encourage interpretability or robustness; and adversarial 
autoencoders (AAEs), which integrate generative adversarial networks (GANs) to regularize latent 
representations. Each variant is designed to fulfill specific learning objectives or to enhance 
generalization in different ways. 

This paper presents a comprehensive overview of the different types of autoencoders, 
categorizing and comparing these models. We aim to provide a clearer understanding of how 
autoencoders have adapted to modern machine learning challenges and where their future potential 
lies. 

2 Autoencoders and types 

Autoencoders are neural network architecture designed to learn efficient representations (encoding) 
of input data in an unsupervised manner. Their core functionality involves compressing data into a 
lower-dimensional latent space and subsequently reconstructing the original input from this 
representation (decoding) [1]. Formally, the encoder function 𝑓𝜃(𝑥) = 𝑧 maps an input 𝑥 to a latent 

code 𝑧, and the decoder 𝑔∅(𝑧) = 𝑥 attempts to reconstruct the input. The training objective is to 

minimize the reconstruction loss 𝐿(𝑥, 𝑥), typically measured using mean squared error (MSE) or 
cross-entropy loss, depending on the nature of the input data. 

Over time, multiple variants of autoencoders have been introduced to address limitations such 
as poor generalization, lack of structure in latent spaces, and sensitivity to noise. These variants 
include sparse, denoising, variational, contractive, adversarial, convolutional, and sequence-to-
sequence autoencoders, each with unique architectures and use cases. Clustering algorithms such 
as K-means are frequently used to evaluate the quality of latent representations learned by 
autoencoders, especially in unsupervised settings where class labels are not available [2]. 

2.1 Basic autoencoder (Vanilla) 

The standard autoencoder is composed of a symmetric feedforward neural network with an encoder 
and decoder. It is trained to minimize the reconstruction loss between the input and output. While 
simple, this model forms the basis for more advanced variants. It has some limitations, i.e. it tends 
to memorize the data if the latent space is too large, it has poor generalization capability to unseen 
data and it does not model the underlying data distribution. 

Additionally, the reliance on pixel-wise reconstruction loss can cause the model to overlook 
high-level semantic features, resulting in visually accurate but semantically meaningless outputs. 
Recent studies have explored alternative loss functions and latent space regularizations to address 
these issues and improve generalization performance [3]. 

2.2 Denoising autoencoder (DAE) 

Denoising autoencoders are a variation of standard autoencoders designed to clean up noisy data 
typically found in real-world datasets [4]. A DAE improves robustness by learning to reconstruct clean 
inputs from noisy versions. This allows the model to focus on essential features and ignore noise, 
which makes it helpful for tasks like the image and speech denoising. DAEs are a form of neural 
network that aim to learn compact representations of data without supervision. Their main goal is to 
find meaningful encodings of the input data, often for tasks like dimensionality reduction, by enforcing 
that the input can be reconstructed from its encoded form. What sets denoising autoencoders apart 
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from traditional autoencoders is their ability to recover the original input from a noisy or altered 
version, thereby effectively learning how to eliminate noise from the data. 
 Denoising involves training the autoencoder to focus on the essential characteristics of the 
data while disregarding irrelevant noise. This is done by compelling the model to emphasize the 
most critical aspects during reconstruction. Consequently, the network gains resilience against noisy 
inputs. A denoising autoencoder shares a similar architecture with a conventional autoencoder. It 
includes an input layer, a set of hidden layers that make up the encoder, a bottleneck layer that holds 
the compressed representation, followed by hidden layers that form the decoder, and finally an 
output layer. The main distinction lies in the training phase, where the input is intentionally altered 
with noise before being processed by the network. 
 The type and amount of noise introduced can significantly impact the model's effectiveness 
and often needs to be carefully adjusted. Similar to other neural network models, training denoising 
autoencoders can demand substantial computational resources, particularly when dealing with 
large-scale datasets or intricate model structures. Although they are capable of filtering out noise, 
improper regularization may lead to the loss of important details or useful information within the data. 

2.3 Sparse autoencoder (SAE) 

Sparse autoencoders enforce sparsity on the latent representation, meaning only a small number of 
neurons are activated for a given input [5]. This is achieved by adding a sparsity penalty term to the 
loss function, such as Kullback-Leibler divergence between the average activation and a small target 
value. Key features include encouraging the learning of independent and interpretable features, 
mimicking the behavior of biological neurons, and being useful in high-dimensional, low-sample-size 
scenarios. Applications include feature extraction for text and images, and unsupervised pre-training 
for deep networks. 

2.4 Contractive autoencoder (ContAE) 

The contractive autoencoder introduces a penalty on the Jacobian matrix of the encoder activations 
with respect to the input. This encourages the model to learn representations that are robust to small 
variations in input. Key features include emphasizing local invariance, learning stable and robust 
embeddings, and being useful for manifold learning. Applications include representation learning in 
noisy environments, anomaly detection, where sensitivity to noise in input data must be 
minimized [6].   

2.5 Variational autoencoder (VAE) 

The variational autoencoder is a probabilistic extension that models the latent variables as a 
distribution rather than a point estimate. Instead of encoding an input to a single latent point, VAEs 
learn the parameters of a probability distribution (typically Gaussian), and sample from this 
distribution to reconstruct the input [7]. Key features include incorporating Bayesian inference into 
autoencoders, learning a generative model of data, and having a latent space with a continuous, 
smooth structure. The loss consists of a reconstruction term and a Kullback-Leibler divergence term 
that regularizes the latent distribution toward a prior. Applications include generative modeling (e.g., 
image synthesis), anomaly detection, and semi-supervised learning. 

2.6 Adversarial autoencoder (AAE) 

The adversarial autoencoder combines the architecture of an autoencoder with the adversarial 
training principle from GANs [1]. In AAEs, a discriminator network tries to distinguish between the 
latent vectors and samples from a target distribution, while the encoder attempts to fool it, thereby 
aligning the encoded distribution with a desired prior. Key features include enforcing desired 
distributions in the latent space, providing a flexible and modular framework, and combining the 
benefits of VAEs and GANs. Applications include domain adaptation, data generation with controlled 
semantics, and privacy-preserving learning. 
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2.7 Convolutional autoencoder (CAE) 

Convolutional autoencoders are specialized for image data [8]. They replace fully connected layers 
with convolutional and deconvolutional layers to better capture spatial hierarchies and reduce 
parameter count. Key features include preserving spatial structure in images, being effective for 
image denoising and inpainting, and working directly with raw image pixels. Applications include 
medical imaging, satellite imagery compression, and image segmentation pre-training. 

2.8 Sequence to sequence autoencoder 

Sequence-to-sequence autoencoders are a type of autoencoder architecture designed to handle 
sequential data, where both the input and output are sequences (e.g., text, time series, or audio) [1]. 
Sequence-to-sequence autoencoders use encoder-decoder architectures to capture temporal 
dependencies, handle variable-length sequences, and learn compact representations of sequential 
data. Applications include machine translation, speech recognition, time-series forecasting, and text 
summarization. 

2.9 Sinkhorn autoencoder (SAE) 

The sinkhorn autoencoder (SAE) is a generative model that combines the structure of a traditional 
autoencoder with the principles of optimal transport to learn meaningful latent representations [9]. 
Unlike variational autoencoders, which impose a probabilistic prior through KL divergence, SAE 
enforces alignment between the encoded latent distribution and a target prior using the Sinkhorn 
divergence—a differentiable approximation of the Wasserstein distance. This approach enables 
more precise control over the geometry of the latent space, facilitating better distribution matching 
without requiring reparameterization tricks. SAE has demonstrated strong performance in tasks such 
as representation learning and generative modeling, particularly excelling in maintaining the 
structure and diversity of complex datasets. 

Patrini et al. [9] evaluated the performance of the Sinkhorn AutoEncoder (SAE) model across 
various tasks and datasets. The model’s effectiveness was assessed in representation learning, data 
reconstruction, and generative modeling. The study highlighted SAE’s advantages over other 
autoencoder variants by comparing it with Variational Autoencoders (VAE), Wasserstein 
Autoencoders (WAE), Sliced Wasserstein Autoencoders, Hungarian Autoencoders, and 
Hyperspherical VAEs. Experiments were conducted on large-scale datasets, including handwritten 
digits and human face images. Reconstruction Error (RE) and Fréchet Inception Distance (FID) were 
used as evaluation metrics. The results demonstrated that SAE offers flexible and powerful 
architecture based on optimal transport principles. In particular, it outperformed other methods in 
aligning distributions in the latent space, contributing to more robust and realistic generative 
performance. 

3 Comparative study of Vanilla and Convolutional autoencoders 

In our investigation, image compression was performed using two types of autoencoder 
architectures: the vanilla autoencoder (AE) and the convolutional autoencoder (CAE). The 
application was developed in Python, and experiments were conducted on the MNIST dataset—a 
widely used benchmark for handwritten digit recognition introduced by LeCun et al. [10]. The dataset 
consists of grayscale images of handwritten digits, serving as a standard for evaluating the 
performance of image processing models. 

A comparative analysis was carried out between the AE- and CAE-based implementations. 
The Python source codes for both models are presented in Table 1. The original handwritten images 
and their compressed reconstructions using both methods are shown below, enabling visual 
inspection of reconstruction quality. 

During the experiments, the AE application completed execution in approximately one minute, 
whereas the CAE implementation required around 43 minutes. This significant difference in running 
time suggests that AE is preferable when speed and computational efficiency are prioritized. 
However, when higher reconstruction fidelity and visual quality are required, CAE proves to be the 
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more effective choice. Upon visual inspection, the CAE-reconstructed images appear more similar 
to the original inputs. 
 

Table 1. Codes Used in Applications 

Vanilla Autoencoder Convolutional Autoencoder 

import numpy as np 

import matplotlib.pyplot as plt 

from tensorflow.keras.datasets import mnist 

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Input, Dense 

from tensorflow.keras.utils import plot_model 

(x_train, _), (x_test, _) = mnist.load_data() 

x_train = x_train.astype('float32') / 255. 

x_test = x_test.astype('float32') / 255. 

x_train = x_train.reshape((len(x_train), 
np.prod(x_train.shape[1:]))) 

x_test = x_test.reshape((len(x_test), 
np.prod(x_test.shape[1:]))) 

input_img = Input(shape=(784,)) 

encoded = Dense(32, activation='relu')(input_img) 

decoded = Dense(784, activation='sigmoid')(encoded) 

autoencoder = Model(input_img, decoded) 

encoder = Model(input_img, encoded) 

autoencoder.compile(optimizer='adam', 
loss='binary_crossentropy') 

autoencoder.fit(x_train, x_train, 

                epochs=20, 

                batch_size=256, 

                shuffle=True, 

                validation_data=(x_test, x_test)) 

encoded_imgs = encoder.predict(x_test, verbose=0) 

decoded_imgs = autoencoder.predict(x_test, 
verbose=0) 

n = 10 

plt.figure(figsize=(20, 4)) 

for i in range(n): 

    ax = plt.subplot(2, n, i + 1) 

    plt.imshow(x_test[i].reshape(28, 28), cmap='gray') 

    plt.title("Original") 

    plt.axis('off') 

    ax = plt.subplot(2, n, i + 1 + n) 

    plt.imshow(decoded_imgs[i].reshape(28, 28), 
cmap='gray') 

    plt.title("Reconstruction") 

    plt.axis('off') 

plt.show() 

import numpy as np 

import matplotlib.pyplot as plt 

from tensorflow.keras.datasets import mnist 

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Input, Conv2D, 
MaxPooling2D, UpSampling2D 

import tensorflow.keras.backend as K 

(x_train, _), (x_test, _) = mnist.load_data() 

x_train = x_train.astype('float32') / 255. 

x_test = x_test.astype('float32') / 255. 

x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) 

x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) 

input_img = Input(shape=(28, 28, 1)) 

x = Conv2D(32, (3, 3), activation='relu', 
padding='same')(input_img) 

x = MaxPooling2D((2, 2), padding='same')(x) 

x = Conv2D(16, (3, 3), activation='relu', 
padding='same')(x) 

x = MaxPooling2D((2, 2), padding='same')(x) 

x = Conv2D(16, (3, 3), activation='relu', 
padding='same')(x) 

x = UpSampling2D((2, 2))(x) 

x = Conv2D(32, (3, 3), activation='relu', 
padding='same')(x) 

x = UpSampling2D((2, 2))(x) 

decoded = Conv2D(1, (3, 3), activation='sigmoid', 
padding='same')(x) 

autoencoder = Model(input_img, decoded) 

autoencoder.compile(optimizer='adam', 
loss='binary_crossentropy') 

autoencoder.fit(x_train, x_train, epochs=20, 
batch_size=256, shuffle=True, validation_data=(x_test, 
x_test)) 

decoded_imgs = autoencoder.predict(x_test) 

n = 10 

plt.figure(figsize=(20, 4)) 

for i in range(n): 

    ax = plt.subplot(2, n, i + 1) 

    plt.imshow(x_test[i].reshape(28, 28), cmap='gray') 

    plt.title("Original") 

    plt.axis('off') 

    ax = plt.subplot(2, n, i + 1 + n) 

    plt.imshow(decoded_imgs[i].reshape(28, 28), 
cmap='gray') 

    plt.title("Reconstructed") 

    plt.axis('off') 

plt.show() 

The reason why the two autoencoders under study have different runtimes despite being used 
for the same purpose is due to the different layer structures of the models. AE consists of only fully 
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connected (dense) layers and processes the input data as one-dimensional vectors. This 
architecture is quite simple and fast. In contrast, the CAE model includes more complex layers such 
as Conv2D, MaxPooling2D, and UpSampling2D. These layers require significantly more 
computation, especially for processing the spatial portions. Secondly, the data format and 
computational intensity are factors that affect the processing time. While the vanilla autoencoder 
processes the data by converting them into 784-dimensional vectors, the convolutional autoencoder 
keeps the data (28x28x1) organized, and this structure is maintained across layers. This increases 
the number of applications it performs on an input sample, thus extending the training time. Finally, 
although CAE has fewer parameters, this does not make it faster. The total computational loss is not 
only the number of parameters but also the amount of computation performed by the layers. 
Convolutional layers perform more processing due to the floating filter values on the image. All this 
results in a large difference between the training conditions of these two models, which are used for 
similar data. 

While AE and CAE are used for a similar purpose—reconstructing data by compressing it—
they differ significantly in their architecture and resource usage. These differences are particularly 
notable in terms of the number of parameters, training time, and the efficient use of computational 
resources. AE consists of fully connected (dense) layers and processes the input image by flattening 
it (a 784-dimensional vector). This structure ignores spatial information, particularly for image data. 
However, thanks to its simplicity, this model requires less computation and can run faster on the 
CPU. However, the vanilla autoencoder has a significantly higher parameter count; even with only 
two layers, it contains approximately 50,000 parameters. 

On the other hand, CAE processes the image in 2D and preserves spatial relationships thanks 
to convolutional layers. While this model's architecture may appear more complex, its total parameter 
count is approximately 12,000. This means it has approximately four times fewer parameters than 
the vanilla model. This makes the model lighter and more memory-efficient. The computational load 
of CAE is higher than that of the vanilla model due to convolutional operations. However, this 
difference becomes an advantage when running on a GPU, as convolutional operations are more 
suitable for parallel computing. 

When the structure of the AE code fragment written above is examined, it is aimed to compress 
the handwritten digits in the MNIST dataset and then reproduce the original image from this 
compressed representation. The dataset used consists of grayscale images, each 28x28 pixels in 
size. In order for the model to work, these two-dimensional images were first flattened and converted 
into one-dimensional vectors. Each image thus became a 784-dimensional vector. In addition, pixel 
values were normalized between 0 and 255 and pulled between 0 and 1. In this way, more efficient 
operation of the functions was ensured. 

First, an input layer was defined in the architecture of the model. After the input, a compression 
layer called the "encoder" section was created. This layer consists of a Dense (fully connected) layer 
and contains only 32 neurons. The input data was compressed into this 32-dimensional space using 
the ReLU activation function. This 32-dimensional vector is the "encoded" version of each input 
image; in other words, it is a smaller but meaningful representation of the input data. From this 
encoded data, the original 784-dimensional image is attempted to be recreated via the "decoder" 
section of the model. The decoder layer also consists of a Dense layer and uses a sigmoid activation 
function at the output. Since the sigmoid function limits the output between 0 and 1, it is a suitable 
choice to reproduce normalized pixel values. The model is trained so that the input and output data 
are the same. This is the typical learning method of autoencoders: the model is given an input and 
the same input is expected as the target (output). In other words, the model tries to reproduce its 
own input. During training, the model measures how similar the output is to the original using the 
binary cross entropy loss function. The Adam algorithm was preferred for optimization, which is a 
powerful method that is widely used today. 

After the model was trained, the encoder model was defined as a separate structure in the 
code. In this way, it was possible to obtain only the encoded representations of the test data. In 
addition, the test data was first compressed by passing it through the encoder, and then these 
representations were reconstructed with the autoencoder model. Thus, it was possible to observe 
how well the representations learned by the model could represent the original. 
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Finally, both the original and the reconstructed images were plotted side by side with the 
matplotlib library. Thanks to this visualization, it is possible to concretely evaluate how successful 
the model is. If there is a loss of clarity or lack of detail between the images, this indicates that the 
model needs deeper structures or different architectures. In short, although this autoencoder offers 
a very simple structure, it is quite functional for understanding the basic principles and for introducing 
low-dimensional representation learning. Depending on the applications to be made, this structure 
can be deepened with more layers if desired. 

This type of data means that each pixel can be interpreted as a probability (the closer to 0, the 
blacker, and the closer to 1, the whiter). Therefore, it is common to use a sigmoid activation function 
in the output layer, and a binary cross entropy loss function is preferred accordingly. Binary cross 
entropy measures how closely the model's outputs can approximate the target values by treating 
each pixel as an independent binary classification problem. This loss function allows for more precise 
and detailed optimization, especially when per-pixel accuracy is required. Furthermore, a loss 
function such as the MSE is preferred when continuous values are clearer and the distribution is 
wider, while binary_crossentropy performs better on low-intensity images normalized between 0 and 
1. This loss function is more suitable for datasets that are simple and close to binary color distribution, 
such as MNIST. 

3.1 Performance evaluation 

The Structural Similarity Index (SSIM) is a metric that quantitatively measures the structural 
similarity between two images. SSIM takes into account luminance, contrast, and structure. In this 
respect, it provides an assessment closer to human visual perception than metrics like MSE and 
PSNR, which rely solely on pixel-by-pixel differences. In the AE model, the data is flattened to 
(num_samples, 784). For the SSIM calculation, these vectors are reshaped to 28x28 pixels. In the 
CAE model, the data is (num_samples, 28, 28, 1). In this case, the last dimension is removed to 
make it suitable for SSIM calculations. SSIM calculations in Python are performed using the 
structural_similarity() function in the scikit-image library. This function works with the following 
parameters: 

from skimage.metrics import structural_similarity as ssim 
score = ssim(original_img, reconstructed_img, data_range=1.0) 
To measure the overall performance of the model, the SSIM value was calculated for each 

image in the test set and these values were averaged. The results show that CAE's SSIM scores 
are higher because it learns spatial relationships through convolutional layers, producing outputs 
that are structurally closer to the original image. However, AE, by flattening the input data, fails to 
fully preserve the overall structure, resulting in a lower SSIM score compared to CAE. 

The output was also evaluated using the MSE (Mean Squared Error) metric, one of the most 
common reconstruction error metrics. AE's failure to consider the input data in its entirety and to 
consider the overall structure, particularly in image data, leads to the model's inability to learn the 
spatial organization of the input data. This generally results in higher MSE values. In contrast, CAE 
uses convolutional and pooling layers to learn local features of the data. This structure is particularly 
sensitive to the relationships between pixels and provides more successful reconstructions by 
preserving the overall structure of the image. Therefore, in the application, CAE was observed to 
produce lower MSE than AE, indicating that the model reconstructed the input data more accurately. 
While the average MSE value of AE on the test data was around 0.0145, CAE trained on the same 
data reduced this error to 0.0078. These results demonstrate that CAE can learn both more efficient 
and more accurate representations in visual data. 

To better understand the study results, a comparison was made using the PSNR (Peak signal-
to-noise ratio) technique. PSNR measures the quality between the original and reconstructed data, 
and a higher PSNR value indicates better image quality. Significant performance differences were 
found between these two applications based on the PSNR metric. The AE application's PSNR values 
ranged from 19 to 22 dB, while the CAE application measured between 25 and 30 dB. This difference 
demonstrates that the convolutional autoencoder is more effective in improving visual quality. 
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4 Discussion 

The comparative evaluation of vanilla and convolutional autoencoders presented in this study 
reveals notable trade-offs between model simplicity, training efficiency, and reconstruction fidelity. 
Vanilla autoencoders, owing to their fully connected architecture, offer computational efficiency and 
ease of implementation. Their ability to perform dimensionality reduction in a straightforward manner 
makes them suitable for rapid prototyping and applications where low latency is a priority. However, 
the inherent limitation of flattening input images before feeding them into dense layers results in a 
loss of spatial information, which significantly impacts reconstruction quality—particularly for data 
types like images, where spatial structure is crucial. 

In contrast, the convolutional autoencoder demonstrated superior performance in preserving 
visual characteristics and fine-grained spatial details. This improvement can be attributed to the 
localized nature of convolutional filters, which allow the network to learn hierarchical feature 
representations directly from raw pixel grids. The use of max-pooling and upsampling layers further 
enables efficient compression and reconstruction without discarding critical spatial relationships. The 
higher SSIM scores obtained by the convolutional model validate its effectiveness in maintaining 
visual fidelity. These findings align with the broader consensus in the literature, where convolutional 
architectures are considered the preferred approach for image-centric tasks. Nevertheless, the 
trade-off in computational demand must be considered. The convolutional autoencoder required 
significantly longer training times compared to its vanilla counterpart. This increased complexity may 
not be justified in scenarios where real-time processing or limited hardware resources constrain 
system performance. Therefore, the choice between vanilla and convolutional autoencoders should 
be context-dependent—guided by the specific demands of the task, the nature of the data, and 
available computational resources. 

Additionally, while both models were evaluated using the MNIST dataset, which is relatively 
clean and low in complexity, further studies on more challenging datasets—such as CIFAR-10 or 
real-world noisy images—could better highlight the robustness advantages of convolutional 
structures. Moreover, integrating noise during training, as in denoising autoencoders, or enforcing 
latent space regularization, as in variational or adversarial autoencoders, may further improve 
generalization and enhance performance in downstream tasks. 

Ultimately, the experimental outcomes emphasize the importance of architectural choices in 
representation learning. Future work could explore hybrid architectures that combine the strengths 
of both dense and convolutional layers, or investigate the incorporation of attention mechanisms to 
dynamically focus on salient regions in the input. As autoencoders continue to evolve, their 
adaptability and modularity will remain key factors in addressing increasingly complex and domain-
specific machine learning challenges. 

5 Conclusion 

Autoencoders have emerged as a vital component in modern machine learning, offering robust 
solutions for tasks such as dimensionality reduction, denoising, anomaly detection, and generative 
modeling. As data and task complexity have grown, various autoencoder architectures have been 
developed to address challenges in feature extraction and representation learning. This study 
provided an overview of several autoencoder variants, each with distinct advantages suited to 
specific applications, highlighting the flexibility of autoencoders in handling diverse data types and 
problem domains. 

Beyond static applications, autoencoders also show promise in dynamic and evolving 
environments. Their ability to learn compact and adaptive representations of high-dimensional data 
can complement cloud-based identification strategies in real-time systems, as demonstrated by 
Blazic et al. [11]. Similarly, in IoT-based robotic systems, convolutional autoencoders are well-suited 
for efficiently processing sensory data, potentially enhancing reactive navigation systems that rely 
on fuzzy cognitive maps for decision-making, such as those described by Vaščák et al. [12]. 

The comparative analysis between vanilla and convolutional autoencoders in the context of 
image compression further underscores the importance of aligning model choice with application 
needs. While vanilla autoencoders excel in computational efficiency and quick training times, 
convolutional autoencoders achieve greater reconstruction fidelity by capturing intricate spatial 
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patterns, as reflected in higher Structural Similarity Index (SSIM) scores. These findings suggest that 
selecting the appropriate autoencoder architecture should depend on whether the primary objective 
is speed or precision. 

In addition to their effectiveness in image compression and feature learning, autoencoders 
have the potential to support system-level analysis in fields such as diagnostics and reliability 
engineering. For instance, simulation-based approaches like the Monte Carlo method have been 
successfully applied to evaluate the reliability of systems with complex interconnections [13]. 
Integrating such simulation frameworks with data-driven representation learning models, including 
autoencoders, could offer promising avenues for predictive maintenance and robust system 
modeling. 

Fundamental structures currently in use, such as the vanilla autoencoder and convolutional 
autoencoder (CAE), lay significant groundwork for future advancements in artificial networking [14] 
[15]. These models have become powerful tools not only for data compression and repartitioning, 
but also for providing deep learning solutions in numerous application domains. More advanced and 
specialized versions of such architectures are expected to be widely used in the future, particularly 
in areas such as cybersecurity, medical diagnosis, autonomous driving, and digital art creation. In 
cybersecurity, autoencoders offer an effective method for identifying anomalies. A model that learns 
from normal system or network changes can identify anomalous behavior, enabling early detection 
of malware, spoofing, or logging attacks. 

In the medical field, convolutional autoencoders can be used to minimize medical noise, 
produce high-quality images, and detect abnormal textures. This could play a significant role in 
generating early diagnostic results and increasing the reliability of AI-assisted diagnostic 
applications. In autonomous driving technologies, CAEs can improve geometric perception by more 
accurately processing sensor isolation. Reducing noise in LIDAR and camera recordings allows for 
safer real-time decision-making. These structures can also be used to detect unexpected driving 
behaviors or sensor malfunctions.  

In the field of digital art and creative content, autoencoder architectures enable the 
development of a new visual language. These structures offer highly effective solutions for tasks 
such as style transfer, image completion, and the adjustment of low-quality media content. Especially 
when integrated with generative models, it is possible to manipulate the features of original artworks 
or personalized content. 
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Table 2. Original and Derived Images 

Original Image AE Predictions CAE Predictions 
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