
Gradus Vol 12, No 2 (2025)
ISSN 2064-8014

 1

AN OVERVIEW OF AUTOENCODER ARCHITECTURES
WITH A COMPARATIVE STUDY OF VANILLA AND

CONVOLUTIONAL VARIANTS

Gökhan Karabıyık 1* and Zsolt Csaba Johanyák 2,3

1 Department of Management of Information Systems, Institute of Social Sciences, Aksaray University,
Türkiye, https://orcid.org/0000-0002-4678-394X

2 Department of Information Technology, GAMF Faculty of Engineering and Computer Science, John von
Neumann University, Hungary, https://orcid.org/0000-0001-9285-9178

3 Institute of Mechatronics and Vehicle Engineering, Bánki Donát Faculty of Mechanical and Safety
Engineering, Óbuda University, Hungary
https://doi.org/10.47833/2025.2.CSC.001

Keywords:
autoencoder
vanilla autoencoder
convolutional autoencoder
denoising autoencoder

Article history:
Received 28 June 2025
Revised 10 July 2025
Accepted 9 July 2025

 Abstract
Autoencoders have become a fundamental tool in unsupervised
learning, addressing various challenges such as dimensionality
reduction, denoising, anomaly detection, and generative
modeling. At their core, autoencoders consist of an encoder that
compresses input data into a lower-dimensional representation
and a decoder that reconstructs the original input. While standard
autoencoders are effective for feature extraction, they suffer from
generalization issues, leading to the development of specialized
variants.
This paper provides an overview of several autoencoder types,
including Denoising Autoencoders (DAEs) that enhance
robustness against noise, Variational Autoencoders (VAEs) that
introduce probabilistic modeling, Sparse Autoencoders that
enforce feature selectivity, Contractive Autoencoders (CAEs)
that ensure stability against small input changes, Adversarial
Autoencoders (AAEs) that integrate generative adversarial
training, Convolutional Autoencoders (CAEs) optimized for
image processing, and Sequence-to-Sequence Autoencoders
designed for sequential data. Each variant offers unique
advantages for specific machine learning tasks. Additionally,
compression was implemented using vanilla and convolutional
autoencoders, and the results were evaluated. These
autoencoder types were chosen because they are widely used in
compression.

1 Introduction

In recent years, autoencoders have emerged as a foundational component in unsupervised and self-
supervised learning, playing a pivotal role in tasks such as dimensionality reduction, denoising,
anomaly detection, and generative modeling [1]. Originally introduced as a simple neural network
architecture that learns to reconstruct its input through a compressed latent representation,
autoencoders have evolved into a diverse family of models tailored to handle a variety of data types,
constraints, and learning objectives.

* Corresponding author.
 E-mail address: gokhan.karabiyik@asu.edu.tr

https://orcid.org/0000-0002-4678-394X
https://orcid.org/0000-0001-9285-9178
https://doi.org/10.47833/2025.2.CSC.001
mailto:gokhan.karabiyik@asu.edu.tr

 G. Karabıyık and Z.C. Johanyák

2

At the heart of every autoencoder lies a dual-stage architecture: an encoder that compresses
input data into a low-dimensional latent space, and a decoder that reconstructs the input from this
compact representation. The reconstruction objective forces the model to capture the most salient
features of the data, making autoencoders effective tools for feature learning. However, as the
complexity of data and tasks has increased, the need for more specialized autoencoder variants also
appeared.

To address limitations of the basic autoencoder such as poor generalization, overfitting, or
inability to model probabilistic distributions researchers have developed a wide range of autoencoder
types. These include denoising autoencoders (DAEs), which improve robustness by learning to
reconstruct clean inputs from noisy versions; variational autoencoders (VAEs), which incorporate
probabilistic inference and have become central to generative modeling; sparse and contractive
autoencoders, which enforce constraints to encourage interpretability or robustness; and adversarial
autoencoders (AAEs), which integrate generative adversarial networks (GANs) to regularize latent
representations. Each variant is designed to fulfill specific learning objectives or to enhance
generalization in different ways.

This paper presents a comprehensive overview of the different types of autoencoders,
categorizing and comparing these models. We aim to provide a clearer understanding of how
autoencoders have adapted to modern machine learning challenges and where their future potential
lies.

2 Autoencoders and types

Autoencoders are neural network architecture designed to learn efficient representations (encoding)
of input data in an unsupervised manner. Their core functionality involves compressing data into a
lower-dimensional latent space and subsequently reconstructing the original input from this
representation (decoding) [1]. Formally, the encoder function 𝑓𝜃(𝑥) = 𝑧 maps an input 𝑥 to a latent

code 𝑧, and the decoder 𝑔∅(𝑧) = 𝑥 attempts to reconstruct the input. The training objective is to

minimize the reconstruction loss 𝐿(𝑥, 𝑥), typically measured using mean squared error (MSE) or
cross-entropy loss, depending on the nature of the input data.

Over time, multiple variants of autoencoders have been introduced to address limitations such
as poor generalization, lack of structure in latent spaces, and sensitivity to noise. These variants
include sparse, denoising, variational, contractive, adversarial, convolutional, and sequence-to-
sequence autoencoders, each with unique architectures and use cases. Clustering algorithms such
as K-means are frequently used to evaluate the quality of latent representations learned by
autoencoders, especially in unsupervised settings where class labels are not available [2].

2.1 Basic autoencoder (Vanilla)

The standard autoencoder is composed of a symmetric feedforward neural network with an encoder
and decoder. It is trained to minimize the reconstruction loss between the input and output. While
simple, this model forms the basis for more advanced variants. It has some limitations, i.e. it tends
to memorize the data if the latent space is too large, it has poor generalization capability to unseen
data and it does not model the underlying data distribution.

Additionally, the reliance on pixel-wise reconstruction loss can cause the model to overlook
high-level semantic features, resulting in visually accurate but semantically meaningless outputs.
Recent studies have explored alternative loss functions and latent space regularizations to address
these issues and improve generalization performance [3].

2.2 Denoising autoencoder (DAE)

Denoising autoencoders are a variation of standard autoencoders designed to clean up noisy data
typically found in real-world datasets [4]. A DAE improves robustness by learning to reconstruct clean
inputs from noisy versions. This allows the model to focus on essential features and ignore noise,
which makes it helpful for tasks like the image and speech denoising. DAEs are a form of neural
network that aim to learn compact representations of data without supervision. Their main goal is to
find meaningful encodings of the input data, often for tasks like dimensionality reduction, by enforcing
that the input can be reconstructed from its encoded form. What sets denoising autoencoders apart

 An Overview of Autoencoder Architectures with a Comparative Study of Vanilla and Convolutional Variants

 3

from traditional autoencoders is their ability to recover the original input from a noisy or altered
version, thereby effectively learning how to eliminate noise from the data.
 Denoising involves training the autoencoder to focus on the essential characteristics of the
data while disregarding irrelevant noise. This is done by compelling the model to emphasize the
most critical aspects during reconstruction. Consequently, the network gains resilience against noisy
inputs. A denoising autoencoder shares a similar architecture with a conventional autoencoder. It
includes an input layer, a set of hidden layers that make up the encoder, a bottleneck layer that holds
the compressed representation, followed by hidden layers that form the decoder, and finally an
output layer. The main distinction lies in the training phase, where the input is intentionally altered
with noise before being processed by the network.
 The type and amount of noise introduced can significantly impact the model's effectiveness
and often needs to be carefully adjusted. Similar to other neural network models, training denoising
autoencoders can demand substantial computational resources, particularly when dealing with
large-scale datasets or intricate model structures. Although they are capable of filtering out noise,
improper regularization may lead to the loss of important details or useful information within the data.

2.3 Sparse autoencoder (SAE)

Sparse autoencoders enforce sparsity on the latent representation, meaning only a small number of
neurons are activated for a given input [5]. This is achieved by adding a sparsity penalty term to the
loss function, such as Kullback-Leibler divergence between the average activation and a small target
value. Key features include encouraging the learning of independent and interpretable features,
mimicking the behavior of biological neurons, and being useful in high-dimensional, low-sample-size
scenarios. Applications include feature extraction for text and images, and unsupervised pre-training
for deep networks.

2.4 Contractive autoencoder (ContAE)

The contractive autoencoder introduces a penalty on the Jacobian matrix of the encoder activations
with respect to the input. This encourages the model to learn representations that are robust to small
variations in input. Key features include emphasizing local invariance, learning stable and robust
embeddings, and being useful for manifold learning. Applications include representation learning in
noisy environments, anomaly detection, where sensitivity to noise in input data must be
minimized [6].

2.5 Variational autoencoder (VAE)

The variational autoencoder is a probabilistic extension that models the latent variables as a
distribution rather than a point estimate. Instead of encoding an input to a single latent point, VAEs
learn the parameters of a probability distribution (typically Gaussian), and sample from this
distribution to reconstruct the input [7]. Key features include incorporating Bayesian inference into
autoencoders, learning a generative model of data, and having a latent space with a continuous,
smooth structure. The loss consists of a reconstruction term and a Kullback-Leibler divergence term
that regularizes the latent distribution toward a prior. Applications include generative modeling (e.g.,
image synthesis), anomaly detection, and semi-supervised learning.

2.6 Adversarial autoencoder (AAE)

The adversarial autoencoder combines the architecture of an autoencoder with the adversarial
training principle from GANs [1]. In AAEs, a discriminator network tries to distinguish between the
latent vectors and samples from a target distribution, while the encoder attempts to fool it, thereby
aligning the encoded distribution with a desired prior. Key features include enforcing desired
distributions in the latent space, providing a flexible and modular framework, and combining the
benefits of VAEs and GANs. Applications include domain adaptation, data generation with controlled
semantics, and privacy-preserving learning.

 G. Karabıyık and Z.C. Johanyák

4

2.7 Convolutional autoencoder (CAE)

Convolutional autoencoders are specialized for image data [8]. They replace fully connected layers
with convolutional and deconvolutional layers to better capture spatial hierarchies and reduce
parameter count. Key features include preserving spatial structure in images, being effective for
image denoising and inpainting, and working directly with raw image pixels. Applications include
medical imaging, satellite imagery compression, and image segmentation pre-training.

2.8 Sequence to sequence autoencoder

Sequence-to-sequence autoencoders are a type of autoencoder architecture designed to handle
sequential data, where both the input and output are sequences (e.g., text, time series, or audio) [1].
Sequence-to-sequence autoencoders use encoder-decoder architectures to capture temporal
dependencies, handle variable-length sequences, and learn compact representations of sequential
data. Applications include machine translation, speech recognition, time-series forecasting, and text
summarization.

2.9 Sinkhorn autoencoder (SAE)

The sinkhorn autoencoder (SAE) is a generative model that combines the structure of a traditional
autoencoder with the principles of optimal transport to learn meaningful latent representations [9].
Unlike variational autoencoders, which impose a probabilistic prior through KL divergence, SAE
enforces alignment between the encoded latent distribution and a target prior using the Sinkhorn
divergence—a differentiable approximation of the Wasserstein distance. This approach enables
more precise control over the geometry of the latent space, facilitating better distribution matching
without requiring reparameterization tricks. SAE has demonstrated strong performance in tasks such
as representation learning and generative modeling, particularly excelling in maintaining the
structure and diversity of complex datasets.

Patrini et al. [9] evaluated the performance of the Sinkhorn AutoEncoder (SAE) model across
various tasks and datasets. The model’s effectiveness was assessed in representation learning, data
reconstruction, and generative modeling. The study highlighted SAE’s advantages over other
autoencoder variants by comparing it with Variational Autoencoders (VAE), Wasserstein
Autoencoders (WAE), Sliced Wasserstein Autoencoders, Hungarian Autoencoders, and
Hyperspherical VAEs. Experiments were conducted on large-scale datasets, including handwritten
digits and human face images. Reconstruction Error (RE) and Fréchet Inception Distance (FID) were
used as evaluation metrics. The results demonstrated that SAE offers flexible and powerful
architecture based on optimal transport principles. In particular, it outperformed other methods in
aligning distributions in the latent space, contributing to more robust and realistic generative
performance.

3 Comparative study of Vanilla and Convolutional autoencoders

In our investigation, image compression was performed using two types of autoencoder
architectures: the vanilla autoencoder (AE) and the convolutional autoencoder (CAE). The
application was developed in Python, and experiments were conducted on the MNIST dataset—a
widely used benchmark for handwritten digit recognition introduced by LeCun et al. [10]. The dataset
consists of grayscale images of handwritten digits, serving as a standard for evaluating the
performance of image processing models.

A comparative analysis was carried out between the AE- and CAE-based implementations.
The Python source codes for both models are presented in Table 1. The original handwritten images
and their compressed reconstructions using both methods are shown below, enabling visual
inspection of reconstruction quality.

During the experiments, the AE application completed execution in approximately one minute,
whereas the CAE implementation required around 43 minutes. This significant difference in running
time suggests that AE is preferable when speed and computational efficiency are prioritized.
However, when higher reconstruction fidelity and visual quality are required, CAE proves to be the

 An Overview of Autoencoder Architectures with a Comparative Study of Vanilla and Convolutional Variants

 5

more effective choice. Upon visual inspection, the CAE-reconstructed images appear more similar
to the original inputs.

Table 1. Codes Used in Applications

Vanilla Autoencoder Convolutional Autoencoder

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Dense

from tensorflow.keras.utils import plot_model

(x_train, _), (x_test, _) = mnist.load_data()

x_train = x_train.astype('float32') / 255.

x_test = x_test.astype('float32') / 255.

x_train = x_train.reshape((len(x_train),
np.prod(x_train.shape[1:])))

x_test = x_test.reshape((len(x_test),
np.prod(x_test.shape[1:])))

input_img = Input(shape=(784,))

encoded = Dense(32, activation='relu')(input_img)

decoded = Dense(784, activation='sigmoid')(encoded)

autoencoder = Model(input_img, decoded)

encoder = Model(input_img, encoded)

autoencoder.compile(optimizer='adam',
loss='binary_crossentropy')

autoencoder.fit(x_train, x_train,

 epochs=20,

 batch_size=256,

 shuffle=True,

 validation_data=(x_test, x_test))

encoded_imgs = encoder.predict(x_test, verbose=0)

decoded_imgs = autoencoder.predict(x_test,
verbose=0)

n = 10

plt.figure(figsize=(20, 4))

for i in range(n):

 ax = plt.subplot(2, n, i + 1)

 plt.imshow(x_test[i].reshape(28, 28), cmap='gray')

 plt.title("Original")

 plt.axis('off')

 ax = plt.subplot(2, n, i + 1 + n)

 plt.imshow(decoded_imgs[i].reshape(28, 28),
cmap='gray')

 plt.title("Reconstruction")

 plt.axis('off')

plt.show()

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Conv2D,
MaxPooling2D, UpSampling2D

import tensorflow.keras.backend as K

(x_train, _), (x_test, _) = mnist.load_data()

x_train = x_train.astype('float32') / 255.

x_test = x_test.astype('float32') / 255.

x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))

x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))

input_img = Input(shape=(28, 28, 1))

x = Conv2D(32, (3, 3), activation='relu',
padding='same')(input_img)

x = MaxPooling2D((2, 2), padding='same')(x)

x = Conv2D(16, (3, 3), activation='relu',
padding='same')(x)

x = MaxPooling2D((2, 2), padding='same')(x)

x = Conv2D(16, (3, 3), activation='relu',
padding='same')(x)

x = UpSampling2D((2, 2))(x)

x = Conv2D(32, (3, 3), activation='relu',
padding='same')(x)

x = UpSampling2D((2, 2))(x)

decoded = Conv2D(1, (3, 3), activation='sigmoid',
padding='same')(x)

autoencoder = Model(input_img, decoded)

autoencoder.compile(optimizer='adam',
loss='binary_crossentropy')

autoencoder.fit(x_train, x_train, epochs=20,
batch_size=256, shuffle=True, validation_data=(x_test,
x_test))

decoded_imgs = autoencoder.predict(x_test)

n = 10

plt.figure(figsize=(20, 4))

for i in range(n):

 ax = plt.subplot(2, n, i + 1)

 plt.imshow(x_test[i].reshape(28, 28), cmap='gray')

 plt.title("Original")

 plt.axis('off')

 ax = plt.subplot(2, n, i + 1 + n)

 plt.imshow(decoded_imgs[i].reshape(28, 28),
cmap='gray')

 plt.title("Reconstructed")

 plt.axis('off')

plt.show()

The reason why the two autoencoders under study have different runtimes despite being used
for the same purpose is due to the different layer structures of the models. AE consists of only fully

 G. Karabıyık and Z.C. Johanyák

6

connected (dense) layers and processes the input data as one-dimensional vectors. This
architecture is quite simple and fast. In contrast, the CAE model includes more complex layers such
as Conv2D, MaxPooling2D, and UpSampling2D. These layers require significantly more
computation, especially for processing the spatial portions. Secondly, the data format and
computational intensity are factors that affect the processing time. While the vanilla autoencoder
processes the data by converting them into 784-dimensional vectors, the convolutional autoencoder
keeps the data (28x28x1) organized, and this structure is maintained across layers. This increases
the number of applications it performs on an input sample, thus extending the training time. Finally,
although CAE has fewer parameters, this does not make it faster. The total computational loss is not
only the number of parameters but also the amount of computation performed by the layers.
Convolutional layers perform more processing due to the floating filter values on the image. All this
results in a large difference between the training conditions of these two models, which are used for
similar data.

While AE and CAE are used for a similar purpose—reconstructing data by compressing it—
they differ significantly in their architecture and resource usage. These differences are particularly
notable in terms of the number of parameters, training time, and the efficient use of computational
resources. AE consists of fully connected (dense) layers and processes the input image by flattening
it (a 784-dimensional vector). This structure ignores spatial information, particularly for image data.
However, thanks to its simplicity, this model requires less computation and can run faster on the
CPU. However, the vanilla autoencoder has a significantly higher parameter count; even with only
two layers, it contains approximately 50,000 parameters.

On the other hand, CAE processes the image in 2D and preserves spatial relationships thanks
to convolutional layers. While this model's architecture may appear more complex, its total parameter
count is approximately 12,000. This means it has approximately four times fewer parameters than
the vanilla model. This makes the model lighter and more memory-efficient. The computational load
of CAE is higher than that of the vanilla model due to convolutional operations. However, this
difference becomes an advantage when running on a GPU, as convolutional operations are more
suitable for parallel computing.

When the structure of the AE code fragment written above is examined, it is aimed to compress
the handwritten digits in the MNIST dataset and then reproduce the original image from this
compressed representation. The dataset used consists of grayscale images, each 28x28 pixels in
size. In order for the model to work, these two-dimensional images were first flattened and converted
into one-dimensional vectors. Each image thus became a 784-dimensional vector. In addition, pixel
values were normalized between 0 and 255 and pulled between 0 and 1. In this way, more efficient
operation of the functions was ensured.

First, an input layer was defined in the architecture of the model. After the input, a compression
layer called the "encoder" section was created. This layer consists of a Dense (fully connected) layer
and contains only 32 neurons. The input data was compressed into this 32-dimensional space using
the ReLU activation function. This 32-dimensional vector is the "encoded" version of each input
image; in other words, it is a smaller but meaningful representation of the input data. From this
encoded data, the original 784-dimensional image is attempted to be recreated via the "decoder"
section of the model. The decoder layer also consists of a Dense layer and uses a sigmoid activation
function at the output. Since the sigmoid function limits the output between 0 and 1, it is a suitable
choice to reproduce normalized pixel values. The model is trained so that the input and output data
are the same. This is the typical learning method of autoencoders: the model is given an input and
the same input is expected as the target (output). In other words, the model tries to reproduce its
own input. During training, the model measures how similar the output is to the original using the
binary cross entropy loss function. The Adam algorithm was preferred for optimization, which is a
powerful method that is widely used today.

After the model was trained, the encoder model was defined as a separate structure in the
code. In this way, it was possible to obtain only the encoded representations of the test data. In
addition, the test data was first compressed by passing it through the encoder, and then these
representations were reconstructed with the autoencoder model. Thus, it was possible to observe
how well the representations learned by the model could represent the original.

 An Overview of Autoencoder Architectures with a Comparative Study of Vanilla and Convolutional Variants

 7

Finally, both the original and the reconstructed images were plotted side by side with the
matplotlib library. Thanks to this visualization, it is possible to concretely evaluate how successful
the model is. If there is a loss of clarity or lack of detail between the images, this indicates that the
model needs deeper structures or different architectures. In short, although this autoencoder offers
a very simple structure, it is quite functional for understanding the basic principles and for introducing
low-dimensional representation learning. Depending on the applications to be made, this structure
can be deepened with more layers if desired.

This type of data means that each pixel can be interpreted as a probability (the closer to 0, the
blacker, and the closer to 1, the whiter). Therefore, it is common to use a sigmoid activation function
in the output layer, and a binary cross entropy loss function is preferred accordingly. Binary cross
entropy measures how closely the model's outputs can approximate the target values by treating
each pixel as an independent binary classification problem. This loss function allows for more precise
and detailed optimization, especially when per-pixel accuracy is required. Furthermore, a loss
function such as the MSE is preferred when continuous values are clearer and the distribution is
wider, while binary_crossentropy performs better on low-intensity images normalized between 0 and
1. This loss function is more suitable for datasets that are simple and close to binary color distribution,
such as MNIST.

3.1 Performance evaluation

The Structural Similarity Index (SSIM) is a metric that quantitatively measures the structural
similarity between two images. SSIM takes into account luminance, contrast, and structure. In this
respect, it provides an assessment closer to human visual perception than metrics like MSE and
PSNR, which rely solely on pixel-by-pixel differences. In the AE model, the data is flattened to
(num_samples, 784). For the SSIM calculation, these vectors are reshaped to 28x28 pixels. In the
CAE model, the data is (num_samples, 28, 28, 1). In this case, the last dimension is removed to
make it suitable for SSIM calculations. SSIM calculations in Python are performed using the
structural_similarity() function in the scikit-image library. This function works with the following
parameters:

from skimage.metrics import structural_similarity as ssim
score = ssim(original_img, reconstructed_img, data_range=1.0)
To measure the overall performance of the model, the SSIM value was calculated for each

image in the test set and these values were averaged. The results show that CAE's SSIM scores
are higher because it learns spatial relationships through convolutional layers, producing outputs
that are structurally closer to the original image. However, AE, by flattening the input data, fails to
fully preserve the overall structure, resulting in a lower SSIM score compared to CAE.

The output was also evaluated using the MSE (Mean Squared Error) metric, one of the most
common reconstruction error metrics. AE's failure to consider the input data in its entirety and to
consider the overall structure, particularly in image data, leads to the model's inability to learn the
spatial organization of the input data. This generally results in higher MSE values. In contrast, CAE
uses convolutional and pooling layers to learn local features of the data. This structure is particularly
sensitive to the relationships between pixels and provides more successful reconstructions by
preserving the overall structure of the image. Therefore, in the application, CAE was observed to
produce lower MSE than AE, indicating that the model reconstructed the input data more accurately.
While the average MSE value of AE on the test data was around 0.0145, CAE trained on the same
data reduced this error to 0.0078. These results demonstrate that CAE can learn both more efficient
and more accurate representations in visual data.

To better understand the study results, a comparison was made using the PSNR (Peak signal-
to-noise ratio) technique. PSNR measures the quality between the original and reconstructed data,
and a higher PSNR value indicates better image quality. Significant performance differences were
found between these two applications based on the PSNR metric. The AE application's PSNR values
ranged from 19 to 22 dB, while the CAE application measured between 25 and 30 dB. This difference
demonstrates that the convolutional autoencoder is more effective in improving visual quality.

 G. Karabıyık and Z.C. Johanyák

8

4 Discussion

The comparative evaluation of vanilla and convolutional autoencoders presented in this study
reveals notable trade-offs between model simplicity, training efficiency, and reconstruction fidelity.
Vanilla autoencoders, owing to their fully connected architecture, offer computational efficiency and
ease of implementation. Their ability to perform dimensionality reduction in a straightforward manner
makes them suitable for rapid prototyping and applications where low latency is a priority. However,
the inherent limitation of flattening input images before feeding them into dense layers results in a
loss of spatial information, which significantly impacts reconstruction quality—particularly for data
types like images, where spatial structure is crucial.

In contrast, the convolutional autoencoder demonstrated superior performance in preserving
visual characteristics and fine-grained spatial details. This improvement can be attributed to the
localized nature of convolutional filters, which allow the network to learn hierarchical feature
representations directly from raw pixel grids. The use of max-pooling and upsampling layers further
enables efficient compression and reconstruction without discarding critical spatial relationships. The
higher SSIM scores obtained by the convolutional model validate its effectiveness in maintaining
visual fidelity. These findings align with the broader consensus in the literature, where convolutional
architectures are considered the preferred approach for image-centric tasks. Nevertheless, the
trade-off in computational demand must be considered. The convolutional autoencoder required
significantly longer training times compared to its vanilla counterpart. This increased complexity may
not be justified in scenarios where real-time processing or limited hardware resources constrain
system performance. Therefore, the choice between vanilla and convolutional autoencoders should
be context-dependent—guided by the specific demands of the task, the nature of the data, and
available computational resources.

Additionally, while both models were evaluated using the MNIST dataset, which is relatively
clean and low in complexity, further studies on more challenging datasets—such as CIFAR-10 or
real-world noisy images—could better highlight the robustness advantages of convolutional
structures. Moreover, integrating noise during training, as in denoising autoencoders, or enforcing
latent space regularization, as in variational or adversarial autoencoders, may further improve
generalization and enhance performance in downstream tasks.

Ultimately, the experimental outcomes emphasize the importance of architectural choices in
representation learning. Future work could explore hybrid architectures that combine the strengths
of both dense and convolutional layers, or investigate the incorporation of attention mechanisms to
dynamically focus on salient regions in the input. As autoencoders continue to evolve, their
adaptability and modularity will remain key factors in addressing increasingly complex and domain-
specific machine learning challenges.

5 Conclusion

Autoencoders have emerged as a vital component in modern machine learning, offering robust
solutions for tasks such as dimensionality reduction, denoising, anomaly detection, and generative
modeling. As data and task complexity have grown, various autoencoder architectures have been
developed to address challenges in feature extraction and representation learning. This study
provided an overview of several autoencoder variants, each with distinct advantages suited to
specific applications, highlighting the flexibility of autoencoders in handling diverse data types and
problem domains.

Beyond static applications, autoencoders also show promise in dynamic and evolving
environments. Their ability to learn compact and adaptive representations of high-dimensional data
can complement cloud-based identification strategies in real-time systems, as demonstrated by
Blazic et al. [11]. Similarly, in IoT-based robotic systems, convolutional autoencoders are well-suited
for efficiently processing sensory data, potentially enhancing reactive navigation systems that rely
on fuzzy cognitive maps for decision-making, such as those described by Vaščák et al. [12].

The comparative analysis between vanilla and convolutional autoencoders in the context of
image compression further underscores the importance of aligning model choice with application
needs. While vanilla autoencoders excel in computational efficiency and quick training times,
convolutional autoencoders achieve greater reconstruction fidelity by capturing intricate spatial

 An Overview of Autoencoder Architectures with a Comparative Study of Vanilla and Convolutional Variants

 9

patterns, as reflected in higher Structural Similarity Index (SSIM) scores. These findings suggest that
selecting the appropriate autoencoder architecture should depend on whether the primary objective
is speed or precision.

In addition to their effectiveness in image compression and feature learning, autoencoders
have the potential to support system-level analysis in fields such as diagnostics and reliability
engineering. For instance, simulation-based approaches like the Monte Carlo method have been
successfully applied to evaluate the reliability of systems with complex interconnections [13].
Integrating such simulation frameworks with data-driven representation learning models, including
autoencoders, could offer promising avenues for predictive maintenance and robust system
modeling.

Fundamental structures currently in use, such as the vanilla autoencoder and convolutional
autoencoder (CAE), lay significant groundwork for future advancements in artificial networking [14]
[15]. These models have become powerful tools not only for data compression and repartitioning,
but also for providing deep learning solutions in numerous application domains. More advanced and
specialized versions of such architectures are expected to be widely used in the future, particularly
in areas such as cybersecurity, medical diagnosis, autonomous driving, and digital art creation. In
cybersecurity, autoencoders offer an effective method for identifying anomalies. A model that learns
from normal system or network changes can identify anomalous behavior, enabling early detection
of malware, spoofing, or logging attacks.

In the medical field, convolutional autoencoders can be used to minimize medical noise,
produce high-quality images, and detect abnormal textures. This could play a significant role in
generating early diagnostic results and increasing the reliability of AI-assisted diagnostic
applications. In autonomous driving technologies, CAEs can improve geometric perception by more
accurately processing sensor isolation. Reducing noise in LIDAR and camera recordings allows for
safer real-time decision-making. These structures can also be used to detect unexpected driving
behaviors or sensor malfunctions.

In the field of digital art and creative content, autoencoder architectures enable the
development of a new visual language. These structures offer highly effective solutions for tasks
such as style transfer, image completion, and the adjustment of low-quality media content. Especially
when integrated with generative models, it is possible to manipulate the features of original artworks
or personalized content.

 G. Karabıyık and Z.C. Johanyák

10

Table 2. Original and Derived Images

Original Image AE Predictions CAE Predictions

 An Overview of Autoencoder Architectures with a Comparative Study of Vanilla and Convolutional Variants

 11

References

[1] W. H. Lopez Pinaya, S. Vieira, R. Garcia-Dias, and A. Mechelli, “Autoencoders,” in Machine
Learning, Elsevier, 2020, pp. 193–208. doi: 10.1016/B978-0-12-815739-8.00011-0.

[2] I.-D. Borlea, R.-E. Precup, F. Dragan, and A.-B. Borlea, “Centroid Update Approach to K-
Means Clustering,” Adv. Electr. Comp. Eng., vol. 17, no. 4, pp. 3–10, 2017, doi:
10.4316/AECE.2017.04001.

[3] S. Dias Da Cruz, B. Taetz, T. Stifter, and D. Stricker, “Autoencoder and Partially Impossible
Reconstruction Losses,” Sensors, vol. 22, no. 13, p. 4862, Jun. 2022, doi: 10.3390/s22134862.

[4] P. Li, Y. Pei, and J. Li, “A comprehensive survey on design and application of autoencoder in
deep learning,” Applied Soft Computing, vol. 138, p. 110176, May 2023, doi:
10.1016/j.asoc.2023.110176.

[5] A. Makhzani and B. Frey, “k-Sparse Autoencoders,” 2013, arXiv. doi:
10.48550/ARXIV.1312.5663.

[6] S. Aktar and A. Y. Nur, “Robust Anomaly Detection in IoT Networks using Deep SVDD and
Contractive Autoencoder,” in 2024 IEEE International Systems Conference (SysCon),
Montreal, QC, Canada: IEEE, Apr. 2024, pp. 1–8. doi: 10.1109/SysCon61195.2024.10553592.

[7] D. P. Kingma and M. Welling, “An Introduction to Variational Autoencoders,” FNT in Machine
Learning, vol. 12, no. 4, pp. 307–392, 2019, doi: 10.1561/2200000056.

[8] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep Clustering with Convolutional Autoencoders,” in
Neural Information Processing, vol. 10635, D. Liu, S. Xie, Y. Li, D. Zhao, and E.-S. M. El-Alfy,
Eds., in Lecture Notes in Computer Science, vol. 10635. , Cham: Springer International
Publishing, 2017, pp. 373–382. doi: 10.1007/978-3-319-70096-0_39.

[9] G. Patrini et al., “Sinkhorn Autoencoders,” in Proceedings of the 35th Uncertainty in Artificial
Intelligence, Tel Aviv, Israel: PMLR, Jul. 2019, pp. 733–743.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.

[11] S. Blazic, D. Dovzan, and I. Skrjanc, “Cloud-based identification of an evolving system with
supervisory mechanisms,” in 2014 IEEE International Symposium on Intelligent Control (ISIC),
Juan Les Pins, France: IEEE, Oct. 2014, pp. 1906–1911. doi: 10.1109/ISIC.2014.6967642.

[12] J. Vaščák, L. Pomšár, P. Papcun, E. Kajáti, and I. Zolotová, “Means of IoT and Fuzzy
Cognitive Maps in Reactive Navigation of Ubiquitous Robots,” Electronics, vol. 10, no. 7, p.
809, Mar. 2021, doi: 10.3390/electronics10070809.

[13] L. Pokorádi, “Monte-Carlo Simulation of Reliability of System with Complex Interconnections,”
Vehicles, vol. 6, no. 4, pp. 1801–1811, Oct. 2024, doi: 10.3390/vehicles6040087.

[14] Y. Liu, C. Ponce, S. L. Brunton, and J. N. Kutz, “Multiresolution convolutional autoencoders,”
Journal of Computational Physics, vol. 474, p. 111801, Feb. 2023, doi:
10.1016/j.jcp.2022.111801.

[15] P. Bedi and P. Gole, “Plant disease detection using hybrid model based on convolutional
autoencoder and convolutional neural network,” Artificial Intelligence in Agriculture, vol. 5, pp.
90–101, 2021, doi: 10.1016/j.aiia.2021.05.002.

