

ADDITÍV GYÁRTÁSSAL KÉSZÜLT DARABOK POROZITÁS VIZSGÁLATÁNAK ÉRDEKESSÉGEI

INTERESTING ASPECTS OF POROSITY TESTING OF ADDITIVE MANUFACTURED PARTS

Dr. Herczeg Szabolcs 0009-0008-5279-0012 1*, Fendrik Ármin 0000-0001-6510-444X 2

¹ Gépjárműtechnológia Tanszék, Budapesti Műszaki és Gazdaságtudományi Egyetem, Magyarország ² MouldTech Systems Kft., Zalaegerszeg, Magyarország <u>https://doi.org/10.47833/2024.3.ENG.005</u>

Kulcsszavak:

Porozitás Porozimetria DMLM Ti64

Keywords:

Porosity Porosimetry DMLM Ti64

Cikktörténet:

Beérkezett2024. január 22Átdolgozva2024. április 10.Elfogadva2024. április 27.

Összefoglalás

Az additív gyártás során a végső termékeknél a porozitás olyan tulajdonság, amely jelentős hatással van a munkadarab végső szilárdságára és meghatározza annak minőségét. Legyen szó kutatásról vagy egyszerű additív gyártási folyamatokról fontos minőségi jelzőszám a munkadarabokban lévő porozitás.

A cikk részletezi, hogy milyen kihívásokkal szembesültünk mi, és milyen nehézségeket tapasztalhat más is egy ilyen látszólag "egyszerű" jelzőszám meghatározása vagy értelmezése során.

Abstract

In additive manufacturing, porosity in final products is a property that has a significant impact on the final strength of the workpiece and determines its quality. As a result, it is a requirement, and also a quality indicator number, to specify the obtained porosity of the workpieces.

This article addresses the challenges we encountered, and the difficulties others may face in determining or interpreting such a seemingly "simple" index in the realm of additive manufacturing.

1. Bevezetés

A Budapesti Műszaki és Gazdaságtudományi Egyetem (BME) Gépjárműtechnológia Tanszékén (GJT) már több, mint két évtizede foglalkozunk az additív gyártártásmódok vizsgálatával, azon belül már akkor is külön figyelmet szentelve a fémport alapanyagként használó technológiákra, mint pl.: a közvetlen lézersugaras fémpor olvasztás (Direct Metal Laser Melting - DMLM).

Az indulás óta, a DMLM technológiával együtt fejlődve, sok érdekességet lehetett tapasztalni a technológiával kapcsolatban és rengeteg kérdés vetődött fel, amelyek egy részét elkezdtük megválaszolni. Jelen cikkben egyet választottunk ki ezekből.

A DMLM technológiával kezdetekben mindenki csak kísérletezett. Ahogy a technológia fejlődött alkalmas lett szemléltető modellek gyártására, majd darabok kis szériás gyártására és most már egyre jobban lehet funkcionális (= üzemszerűen beépíthető) alkatrészek gyártására is használni [1, 2]. Ezt a fejlődést a mechanikai tulajdonságok folyamatos fejlesztése, és az ebből eredő anyagtulajdonság fejlődése tette lehetővé.

Additív gyártás esetén a végső daraboknál a porozitás az egyik olyan tulajdonság, amely nagyban befolyásolja a munkadarab végső szilárdsági tulajdonságát és a meghatározza annak

* Kapcsolattartó szerző.

E-mail cím: <u>herczeg.szabolcs@kjk.bme.hu</u>

minőségét is. Az anyag porózusságának hatását és azok keletkezését más szerzők [3, 4] már nagyon jól összefoglalták. Egy kutatásnál, de akár egy egyszerű gyártánál is, követelmény és egy minőségi jelzőszám is, hogy megadjuk a munkadarabok kapott porozitását.

Ez a cikk arról szól, milyen nehézségekbe ütköztünk mi, és fog más is ütközni, egy ilyen "egyszerűnek tűnő" jelzőszám meghatározásánál, vagy éppen annak értelmezésénél.

2. A porozitásmérésről általánosságban

Ha a szakirodalmakat megnézzük, akkor egy szilárd test porozitás mérésére 5-10 módszer is adódik egyszerre. Ezek a módszerek vagy közvetlenül visszaadják a porozitást, vagy sűrűséget mérnek, és a tömör anyag elméleti sűrűségéből következtetnek a pórusok százalékos mennyiségére. Az első ábrákon összefoglaltuk magunknak, hogy mi milyen módszereket találtunk, és külön megjelöltük, hogy összehasonlító méréseinknél melyek eredményeit vizsgáltuk meg.

1. ábra. A porozimetriai mérések kategorizálása (a 6 db vizsgált módszerrel)

A <u>"Mechanikai méréses"</u> módszernél első lépésben a minta sűrűséget számítjuk ki és abból számítjuk a porozitást. A sűrűséghez a minta tömegét akár egy nagy pontosságú mérleggel is meg tudjuk mérni. Ha egyszerű geometriai alakzatunk van (gömb, henger, hasáb, …), akkor a fizikai méreteket viszonylag nagy pontossággal tudjuk mérni (mikrométer, tolómérő, mérőgép), amelyből a térfogat kiszámítható. A módszer hátránya, hogy bonyolult alakzatoknál nehézkes a valós térfogat meghatározása. Illetve a pórusok méretére, eloszlására egyáltalán nem lehet következtetni.

Az <u>"Archimedes-módszer"</u> [3] [5] segítségével szintén csak a vizsgált minta sűrűségét (ρ_{minta}) tudjuk meghatározni, majd ebből tudunk a porozitásra következtetni. A mérés során a minták tömegét levegőben ($m_{levegőben}$), majd folyadékban ($m_{folyadékban}$) egy mérleggel megmérjük (2. ábra). A két érték ismeretében egy egyszerű kivonással megkaphatjuk a kiszorított folyadék tömegét. A folyadék sűrűségének (ρ foly) felhasználásával megkapjuk a kiszorított folyadék térfogatát, ami egyben a vizsgált minta térfogata is. Ha a minta sűrűségét még pontosabban akarjuk meghatározni, akkor a levegő felhajtó erejét is, annak sűrűségével (ρ levegő) figyelembe kell venni (1. egyenlet).

$$\rho_{\text{minta}} = (\rho_{\text{foly}} - \rho_{\text{leveg}\tilde{o}}) \cdot \frac{m_{\text{leveg}\tilde{o}\text{ben}}}{m_{\text{leveg}\tilde{o}\text{ben}} - m_{\text{folyadékban}}} + \rho_{\text{leveg}\tilde{o}}$$
(1)

2. ábra. Az Archimedes mérés menete: balra a levegőben, jobbra folyadékban [5]

Az Archimedes-módszer előnyei közé tartozik, hogy roncsolásmentes vizsgálatot tesz lehetővé. Az eljárás hátránya, hogy csak olyan mintákat vizsgálhatunk, amelyeknek zárt a térfogatuk, elkerülendő a test belsejébe való mérőfolyadék beáramlás, ami meghamisítaná a sűrűség értékét. Továbbá a módszer nem ad képet a pórusok elhelyezkedéséről, nagyságáról, illetve az olyan zárt pórusokról, melyekben az alapanyag olvadás nélkül, por formájában rekedt.

A <u>"Gázpiknometria"</u> [3] [6] is egy roncsolásmentes, térfogatmérő módszer, amely nyomáskiegyenlítésen alapul. A hélium-piknométeres méréshez két tökéletesen ismert térfogatú kamrára, egy nyomásmérőre és egy szabályozható nagynyomású hélium-gáz tartályra van szükség. Az első kamrára csatlakozik a nagynyomású gáztartály és ide helyezzük be a mérendő mintadarabot légköri nyomáson (p_{környezeti}), majd lezárjuk. A második kamra a tágulási kamra, ami szeleppel a környezethez csatlakozik. A 3. ábrán látható a rendszer elvi felépítése.

3. ábra. A gázpiknometriai mérés sematikus ábrája [7]

Az ismeretlen térfogatú mintát (V_{minta}) behelyezzük a helyére és a rendszert átöblítjük héliummal. Amikor ez a folyamat befejeződött, a kamrákat el kell zárni a külső környezettől, majd:

- A két kamrát (V_{minta} és V_{tágulási}) azonos, nagyjából környezeti nyomás alá helyezzük;
- A kamrákat elszigeteljük egymástól, és a mintát tartalmazó oldalt nagy nyomás alá helyezzük a hélium tartályból. A keletkező nyomás lesz a p1 értéke;
- A két térfogatot szelepnyitással újra összekapcsoljuk. Itt kapjuk meg a p₂-es nyomásértéket.

Ezt követően a három nyomás (p_{környezeti}, p₁, p₂) és a két kamra térfogatának ismeretében a Boyle – Mariotte - törvényt használjuk a minta térfogatának kiszámításához (lásd 2. egyenlet):

$$V_{\text{minta}} = \frac{V_{\text{elsődleges}} - V_{\text{tágulási}}}{\frac{p_1 - p_{\text{kőrnyezeti}}}{p_2 - p_{\text{kőrnyezeti}} - 1}}$$
(2)

A vizsgált minta tömegét előzetesen mérleggel megmértük és most már ismerjük térfogatát is, így kiszámítható annak sűrűsége. A kapott sűrűség érték a 100%-osan tömör anyag referencia sűrűségével való összehasonlítás révén meghatározható a porozitás-arány.

A fém próbatestek <u>"mikroszkópos vizsgálatát"</u>[8][9] metallográfiának nevezzük. Mikroszkópon keresztül, keresztmetszeti síkcsiszolatban, megfigyelhető az anyag szerkezete. A látható kép elemzésével közvetlenül a porozitási arány értékéhez juthatunk.

A módszer esetén a szürkeárnyalatos képekből ki kell szűrnünk a számunkra releváns információkat, egy küszöbérték beállításával úgy, hogy a keresett objektumokra és háttérre bontjuk a felvételt a képpontok intenzitása alapján. Egy saját mintánk küszöbölése az 4. ábrán látható.

4. ábra. A mintánkon vörössel látható a felismert objektum a küszöbölést követően

Ez a módszer lehetővé teszi a pórusok helyének, méretüknek és alakjuknak becslését a mintában, de nem veszi figyelembe a teljes mintát és roncsolásos eljárásnak minősül. [3]

A <u>"Rosiwall-módszer"</u> eredetileg arra szolgál, hogy mikroszkópi vizsgálatok során az egyensúlyihoz közeli állapotú ötvözetekben két fázis arányát mérhessük meg. Az 5. ábrán bemutatott mérés okulárskálával történik, amit ráhelyezünk a vizsgálandó keresztmetszetre. [10]

5. ábra. A Rosiwall-módszer felhasználása a porozitás-arány meghatározására

Amennyiben tudjuk az okulárskála hosszát (L), illetve a porozitások összeadott skálaletakarását ($Pi=P_1+P_2+...$), akkor kiszámolható a vonalmenti porozitás aránya (3. egyenlet):

porozitás arány
$$[\%]_i = \frac{P_i}{L} \cdot 100$$
 (3)

A komputer-tomográfia (Computer Tomography - CT) egy roncsolásmentes mérési technika, amely képes a pórusok/hibák méretének, alakjának, térfogatának és eloszlásának teljes elemzésére a vizsgált térfogaton belül. Elve leegyszerűsítve (lásd 6. ábra), hogy a röntgensugarakat a próbatestünkön átvezetjük, majd az így energiájában megváltozott sugarakat egy detektorral felfogjuk. Anyaghibák esetén különböző intenzitások jönnek létre. A detektorból érkező elektromos jelekből egy számítógép segítségével készül el a rekonstruált 2D-s vagy 3D-s röntgenfelvétel. [11]

6. ábra. A röntgen CT képalkotásának sematikus ábrája [12]

3. Összehasonlító mérések

3.1. A mintadarabok bemutatása

A porozimetirai összehasonlító méréseink során olyan lézeres olvasztással készült mintadarabokat vizsgáltunk, amelyek valamely gyártási paraméterben eltértek egy bizonyos 100% sűrűségűnek tekinthető standard paraméterekkel legyártott mintadarabtól. Ez a darab a táblázatainkban a DP (default parameter) megjelöléssel szerepel. Eredendően ez számított volna viszonyítási alapként a többi mintadarab eredményeihez képest, viszont a mérések során kiderült, nem elegendően porozitásmentes. A rendszerünk hitelesítéséhez rendelkezésünkre állt olyan, a minták anyagával megegyező etalon darab, ami az összes általunk készített mintánál sűrűbbnek bizonyult. Ez lett végül a viszonyítási alapunk. Az összes vizsgálandó test titán-alumínium ötvözet (Ti6Al4V) hengeres formában. A különböző porozitás értéket az olvasztást végző lézersugár pásztázási távolságának növelésével értük el. A feltétel az volt, hogy különböző porozitású darabokat kapjunk vissza, amelyeket különböző porozimetriai módszerekkel vizsgáltunk meg. A reprodukálhatóság miatt az 1. táblázatban adtuk meg a gyártási paramétereket.

	Mintadarab jelölések			
Gyártási paraméterek	DP	TP6	TP9	TP10
Pásztázási távolság [mm]	0,06	0,12	0,18	0,24
Lézer teljesítmény [W]	1400			
Folt mozgatási sebesség [mm/s]	100			

1. Táblázat, Egy EOS M100 géppel, Ti64 porból készített mintáink főbb gyártási paraméterei

3.2. A mérési eredmények és azok értékelése

Az 1. ábrán látható módszerekkel vizsgáltuk a gyártott darabjainkat. A mechanikai mérés, az Archimedes-módszer, a Rosiwall-módszer és a szoftveres mérés saját belső tanszéki mérések voltak. A CT méréseket egy Nikon XT H225ST típusú röntgentomográfon, a gázpiknometriai méréseket egy Ultrapyc-5000 típusú gázpiknométerén végeztük el, külsős intézeteknél.

7. ábra. Azonos darabokon különböző módszerekkel kapott porozitás értékeink

A különböző mérési módszerek által, ugyanazon darabra vonatkozó, porozitás értékeket a 9. ábrán mutatjuk be. A vízszintes tengelyen a különböző mérési módszerek találhatóak, ezek által a négy vizsgált darabon mért porozitás értékeket szaggatott vonallal kötöttük össze. Ezek a szaggatott vonalak nem hivatottak a változás trendjét mutatni, hanem csak arra szolgálnak, hogy az azonos darabokhoz tartozó értékeket könnyebb legyen beazonosítani.

3.3. A diagram értelmezése

Nézzük meg cikkünk fő célját, hogy a mért diagramok alapján milyen következtetéseket lehet levonni a különböző porozitás mérési eljárások által visszaadott értek összehasonlítása alapján.

A gyártási paraméterek változtatása alapján, a várt eredmény az lenne, hogy a legkisebb porozitás értékkel a DP jelű daraboknak kellene rendelkeznie, majd egyre növekvő a pásztázási távolság mellett (TP6, TP9, TP10 lásd 1. sz. táblázat) egyre nagyobb porozitás értéket kapunk.

Az egyes mérési módszerek külön-külön vizsgálva nagyjából vissza is adják az előbb említett elvárt trendet, ez alól egyedüli kivétel volt a TP10-es minta Rosiwall-módszeres értéke.

A mérési módszerek egymáshoz történő hasonlításából látható, hogy a gázpiknometriai és a mikroszkópos képelemzési vizsgálatokkal (ImageJ, Rosiwall) jelentősen eltérő eredményeket kaptunk a többi eljárás eredményeihez képest. Ennek oka a képelemzéses módszereknél lehet, hogy a mérési eljárások túlnyomóan szubjektív megítélés alapján készültek. Azaz a mérési határok nagyban függtek attól, hogy a mérést végzőszemély, hova állítja be a kiértékelési határokat. Továbbá a vizsgált keresztmetszetek jellemzői nem reprezentálják a próbatestek teljes egészét. Ezt a megállapítást erősíti, hogy rendelkezésünkre állnak a minták röntgentomográfia felvételei is (8. ábra), ami a porozitások aszimmetrikus térbeli elhelyezkedéséről ad képet.

8. ábra. A DP, a TP6 és TP9 számú minta 3D-s röntgentomográfiai képe

A maradék három módszer (Mikrométeres-, Archimedes-, röntgen CT vizsgálat) eredményei viszont hasonlóságot mutatnak egymással. A röntgen CT esetében megjegyzendő, hogy bár az eredmények tendenciája hasonló, értékeiben nagyobb eltérés tapasztalható. Ha ennek a lehetséges okait keressük, elképzelhető, hogy például az Archimedes-módszer eljárásánál azért kapunk kisebb értékeket, mert a zárt pórusok nem gázokat, hanem olvadatlan fémport tartalmaznak. A fémpor sűrűsége jóval nagyobb, mint bármilyen gázé. Ugyanez a jelenség lehet a mikrométeres eljárás esetében is. A röntgentomográfia elemzés folyamán a fémporral telített pórusok is jól kirajzolódnak, hiszen más lesz a fémpor és a tömör anyag röntgensugár elnyelődése.

A cikk alapjául szolgáló mérések tanulsága, hogy nem tudjuk megállapítani, melyik mérési módszer adhat olyan eredményt, amely bázisnak vehető, és amelyhez képest a többi módszerek eredményei hozzá hasonlíthatóak. Egy-egy mérési módszer önmagában nem lesz teljesen egzakt, az általa adott porozitás értéket nem lehet összehasonlítani egy másik módszerrel kapott eredménnyel. A különböző mérési módszerek nem helyettesítik, hanem kiegészítik egymást.

Különböző darabok összehasonlító méréseinél ügyelni kell arra, hogy ugyanazon mérési módszerrel kapott eredményeket hasonlítsunk össze.

Támogatás hivatkozása

A projektet a Nemzeti Kutatási, Fejlesztési és Innovációs Alap (NKFIH) finanszírozta. Projekt címe: "Innovatív és újszerű megoldásokra épülő többcélú merevszárnyú drón és a fejlesztéséhez szükséges kompetenciák létrehozása". A pályázat száma: 2019-1.1.1-PIACI-KFI-2019-00139. Belsős méréseinket Bőhm Gergely szakdolgozós diákunk segítette. A CT méréseket a Pannon Egyetem, Anyagmérnöki Intézetében Dr. Kovács András végezte el részünkre. A gázpiknometriai méréseket az Anton Paar Hungary Kft.-nél Kokavecz László és Dudás Imre szolgáltatta számunkra. A szerzők ezúton is köszönik a pénzügyi támogatást és az intézetek önzetlen segítségét!

Hivatkozott irodalmak

- [1] J. C. Naimon, S. Raeisi and A. Tovar, "Review of additive manufacturing technologies and applications in the aerospace industry," Elsevier, vol. Additive Manufacturing for the Aerospace Industry, pp. 7-31, 2019., DOI: 10.1016/B978-0-12-814062-8.00002-9
- [2]
- EOS GmbH., "Taking the laser lead," Elsevier, Vols. May-June, pp. 24-24, 2014. T. DE TERRIS, O. ANDREAU, P. PEYRE, F. ADAMSKI, I. KOUTIRI, C. GORNY és C. DUPUY, "Optimization and [3] comparison of porosity rate measurement methods of Selective Laser Melted metallic parts - Additive Manufacturing," pp. 802-813 in Vol. 28., August 2019., DOI: 10.1016/j.addma.2019.05.035
- [4] F. Honarvar és A. Varvani-Farahani, "A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control," Ultrasonics, december 2020.
- A. B. Spierings és M. Schneider, "Comparison of density measurement techniques for additive manufactured [5] metallic parts," Institute for Rapid Product Development, pp. 380-386, 2011., DOI: 10.1108/13552541111156504
- F. J. Semel és D. A. Lados, "Porosity analysis of PM materials by helium pycnometry," Powder Metallurgy, pp. 173-[6] 182, 2013., DOI: 10.1179/174329006X95347
- C. S. Chang, "Measuring Density and Porosity of Grain Kernels," Association of Cereal Chemists, 1988. [7]
- Z. Dr. Gácsi és P. Dr. Barkóczy, Számítógépi képelemzés, Miskolc: Nemzeti tankönyvkiadó, 2009. [8]
- [9] I. Tóth, Szabadon választott téma a digitális képfeldolgozás témakörében, Képjavítási eljárások, Debrecen: Debreceni Egyetem, Informatikai Kar, 2008.
- [10] Anyagtudomány és Technológia Tanszék, "Mikroszkópvizsgálat elektronikus jegyzet," BME, Budapest, 2021.
- [11] S. Damjanovich, J. Fidy és J. Szöllősi, Orvosi biofizika, Budapest: Semmelweis Egyetem, 2007, p. 698.
- [12] X. Cai, B. S. Wong, A. A. Malcolm és Z. Fan, "Measurement and characterization of porosity in aluminium selective laser melting parts using X-ray CT," Virt. & Phys. Prot, pp. 195-206, 2015., DOI: 10.1080/17452759.2015.1112412