

SÍKALAKVÁLTOZÁSI NYOMÓVIZSGÁLAT ALKALMAZHATÓSÁGA VÉKONY LEMEZEK ESETÉN

THE APPLICATION POSSIBILITIES OF PLANE STRAIN COMPRESSION TEST ON THIN SHEET METALS

Szőke Dániel Gyula 0000-0003-1232-2245, Kölüs Martin László 0000-0002-4854-8687, Borbély Richárd 0000-0003-3391-2666, Béres Gábor József * 0000-0002-1496-5618

Innovatív Járművek és Anyagok Tanszék, GAMF Műszaki és Informatikai Kar, Neumann János Egyetem, Magyarország https://doi.org/10.47833/2023.2.ENG.003

Kulcsszavak:	Összefoglalás
folyásgörbe felvétel	A folyásgörbék pontos ismerete a nagy alakváltozások
nyomóvizsgálat	tartományában fontos a képlékeny alakváltozással járó
vékonylemezek	technológiák tervezése és alkalmazása során. E cél érdekében
sík feszültségi állapot	különböző folyásgörbe felvételi módszereket alkalmaznak, mint
	például a hidraulikus mélyítővizsgálat, a nyomóvizsgálat, a stósz-
	nyomóvizsgálat és a síkalakváltozási zömítővizsgálat. Ezek
	végrehajtását különböző tényezők nehezítik. A cikk témáját képző
	síkalakváltozási nyomópróbánál a kis szerszámszélesség okozhat
	nyírást, illetve nehezíti a szerszám pozícionálását. A munkánk
	célja megvizsgálni azt, hogy több lemezt egymásra helyezve a
	síkalakváltozási nyomópróba esetében, milyen törvényszerűségek
	szerint vehető fel a folyásgörbe. A vizsgálatok hidegen hengerelt
	ferrites szövetszerkezetű autóipari lemezeken (DC04) kerülnek
	elvégzésre. A kísérletek eredményei alapján kijelenthető, hogy a
	több lemez egymásra helyezésével mintegy tömbösített
	síkalakváltozási nyomópróba alkalmas a nagy alakváltozási
	tartományokat lefedő folyásgörbék felvételére.
Kovwords:	Abstract
flow curve	Large strain flow curves have major importance both from research
compression test	and from industrial application point of views, in the field of cold
plane strain condition	forming technologies. That is why scientists use different methods,
shoet metal	for example hydraulic bulging test, stack compression test, plane
stack compression	strain compression test and simple compression test. During these
Stack compression	experiments we can face some difficulties. Using plane strain
	compression test, the small tool width and the positioning can
	cause shear. Our goal is to study if stacking sheets together could
	result the same behavior as a block sample, and to be able to
	obtain the flow curve for large strains. The experiments are being
Cikktörténet:	executed on cold-rolled ferritic sheets (DC04) used in vehicle
Beérkezett 2022. október 10.	industry. Based on the results, the hardening curves for large
Átdolgozva 2023. április 12.	deformation can be successfully performed using the plane strain
Elfogadva 2023. augusztus 5.	compression test on stacked, thin sheets.

^{*} Kapcsolattartó szerző. Email: <u>beres.gabor@nje.hu</u>

1. Bevezetés, a síkalakváltozási zömítővizsgálat elméleti alapjai

A nyomó igénybevétel által történő folyásgörbe-felvételi módszerek közé tartozik a síkalakváltozási nyomóvizsgálat. A kutatásokban az adott módszerre hivatkozni síkalakváltozási nyomó- vagy zömítővizsgálat néven, vagy a vizsgálatot leíró személyek után Watts-Ford próbaként szoktak. Angolul plane strain compression test-ként, vagy rövidítve PSCT néven említik az adott módszert. A kísérletet először Nádai et al. és Orowan et al. alkalmazta, a folyamat tökéletesítését Watts et al. és Sellars et al. végezte el [3].

A Watts-Ford próbát két azonos, egymással szembeállított hasáb alakú szerszámmal végezzük el (1. ábra). Amennyiben nem kívánt nyírás lépne fel a próba elvégzése során a nyomott részen, abban az esetben engedélyezett a hasábok szélein lekerekítések alkalmazása. A két nyomóbetéttel a próbatestben, kéttengelyű, nyomó feszültségi állapotot hozunk létre a szerszám geometriája által kijelölt területen. A vizsgálatot hasáb alakú, kis magasságú, nem szabványosított próbatesten végezzük. A síkbeli alakváltozási feltételek és az ezzel járó síkfeszültségi állapot eléréséhez a munkadarab méreteinek a szerszám méreteihez képest adott tartományon belül kell lenniük [3]. A fontosabb paraméterek az 1. ábrán láthatóak.

1. ábra. Watts-Ford próba fontosabb geometriai méretei

A geometriai tényezők közül a legfontosabb a lemezvastagság és a bélyegszélesség viszonya (h' / w viszony). Mérvadó még a minta szélességének (w') és vastagságának (h') aránya, a próbatest szélességének (w') és a szerszámszélességnek (w) az aránya, továbbá a lemezhossz (l') és bélyegszélesség (w) viszonya, illetve a bélyeg hosszának (l) és a minta szélességének (w') aránya. Különböző kutatók által meghatározott geometriai viszonyszámok az 1. táblázatban tekinthetők meg.

	$\frac{W'}{L'}$	<u>w'</u>	<u>l'</u>	$\frac{l}{l}$	$\frac{h'}{}$	Bélyeg rádiusz (R _a)
Graf et al. [3]	>8	<i>w</i> ≥3 (jobb ≥12)		>1.1		$2 * \frac{h_{sheet}}{W}$
Chermette et al. [1]	-	≥6	>3	-	$\frac{1}{4} \leq \dots \leq 1$	- wpunch
Banabic et al. [2]	-	≥10	-	-	-	1≤ <i>R</i> ≤2
Nuttakorn et al. [4]	-	≥5	-	-	$\frac{1}{4} \le \dots \le \frac{1}{2}$	-
Mohebbi et al.[9]	-	12 ≥ ≥ 5	-	-	$\frac{1}{4} \le \dots \le \frac{1}{2}$	-

1. táblázat. Geometriai összefüggések

2. Kivitelezés

2.1. Mérési módszer bemutatása

A kísérletsorozat elvégzése Instron 5900R 4482 elektromechanikus működtetésű univerzális anyagvizsgáló berendezésen történt. A berendezés alkalmas húzó, hajlító, nyíró és kompressziós igénybevételek kifejtésére, így tökéletes a szilárdsági és képlékenységi jellemzők meghatározására. A berendezés és az erőmérő cella maximális tartománya 100 kN, a maximális keresztfej-sebesség pedig 500 mm/min. A vizsgálat során használt szerszám a gépre felszerelve és beállítva a 2. ábrán látható.

2. ábra. Watts-Ford próbához előkészített szerszám

A vizsgálatok elvégzése során a súrlódás minimalizálása érdekében úgynevezett szendvicskenést alkalmaztunk. A szendvicskenéshez BWS-ol HK-280 típusú mélyhúzó hidegalakító EP szintű olaj és teflon fólia került felhasználásra. Ezen kenési forma alkalmazásának szükségességét a fellépő súrlódás értékének a lehető legkisebbre történő csökkentése indokolta. A kenési módszer alkalmazása során először a minta felszíne került bekenésre az olajjal, majd a

méretre vágott teflon fólia került elhelyezésre az olajjal már bekent felszínre. A szendvicskenés sematikus modellje a 3.ábrán látható.

3. ábra. Szendvicskenés sematikus ábrája

A próbanyomásokat követően azt tapasztaltuk, hogy kis értékű nyomóerő alkalmazása esetén is a megengedettnél jóval nagyobb mértékű nyírás lépett fel. A nyírás kiküszöbölésére végül új nyomóbetét pár tervezése és legyártása jelentette a megoldást. Az új szerszám mérvadó méretei megegyeznek az eredetivel, a különbség az, hogy a hasáb szélein lekerekítések találhatók. A problémát kiküszöbölni képes betétpár pontos geometriája a 4. ábrán látható.

4. ábra. Új betétpár geometriája

Az új szerszámbetéttel próbanyomásokat végeztünk, mivel sikeres eredmények adódtak, így sor kerülhetett a kísérletsorozat végrehajtására. A minták anyagául a DC04, hidegen hengerelt, jó alakíthatósági tulajdonságokkal rendelkező járműipari acéllemezre esett a választásunk. DC04 egy ötvözetlen, ferrites szövetszerkezetű acél, melyet a hengerlést követően már nem vetünk alá hőkezelésnek [7,8]. A próbatest befoglaló mérete a kísérlet elején 40x34x1 mm volt, majd a lemezszélességet felére csökkentettük, hogy azonos nvomóerő az mellett ébredő nyomófeszültséget és az alakváltozást növelni tudjuk. Ennek eredményeképpen 40x17x1 mm-es mintákkal is végrehajtottuk a kísérleteket. A kísérletek további érdekessége, hogy vizsgáltuk a minták egymásra helyezésének hatását is, azaz a kísérleteket egy lemezzel, illetve két és három egymásra helyezett lemezzel is végrehajtottuk. A lemezek egymásra helyezésének ötletét a "stack compression" nevezetű folyásgörbe felvételi módszer adta. A módszer feltételezi, hogy az egymásra helyezett lemezek a vizsgálat elvégzése során úgy viselkednek, mintha tömbi anyagról lenne szó. A két, illetve három egymásra helyezett lemez esetében a betétpár geometriájának megváltoztatására volt szükség, hogy a megadott geometriai határokon belül maradjunk, adott szélességű és hosszúságú minta esetében is. A két és három egymásra helyezett lemez esetében használt szerszámgeometria az 5. ábrán látható.

5. ábra. Új betétpár geometriája két és három egymásra helyezett lemez esetében

A 2. táblázatban az elvégzett kísérletek beállításai kerülnek összefoglalásra.

2. táblázat. Kísérleti	paramétereket összefoglaló	táblázat
------------------------	----------------------------	----------

	Erő [kN]					
	55	60	65	70	80	90
1 lemez (40x34x1)	-	х	-	-	х	х
2 lemez (40x34x2)	-	-	-	-	-	х
3 lemez (40x34x3)	-	-	-	-	-	х
1 lemez keskeny (40x17x1)	-	-	-	-	-	-
2 lemez keskeny (40x17x2)	-	х	х	х	Х	-
3 lemez keskeny (40x17x3)	Х	Х	х	Х	-	-

2.2. Kiértékelés bemutatása

A kísérletek elvégzése után következett a kiértékelési fázis, melynek első lépése volt a mintáknak, a nyomó betétekre merőlegesen, hosszúság irányban történő félbevágása. Erre azért volt szükség, mert a kismértékű hordósodás miatt a minta szélén a nyomott sáv magassága kisebb volt a valós magasságnál. A hordósodás jelensége során a nyomólapok és a minta véglapjai között fellépő súrlódásból adódó feszültség fékezi a véglapok irányába történő anyagáramlást. A súrlódási

feszültség megjelenése miatt a próbatestben a feszültségállapot többtengelyű. Ha sikerül biztosítani, hogy a súrlódás elhanyagolhatóan kismértékű legyen, akkor a próbatestben jó közelítéssel kéttengelyűnek tekinthető a feszültségállapot [5]. A próbatestek elvágására a Jean Wirtz Cuto 20 hűtő-kenő folyadékot keringető abrazív tárcsás vágógépen került sor, amivel jelentős hőhatás nélkül kivitelezhető volt a művelet.

Az elvágott minták magasságváltozásának és a nyomott sáv pontos méretének meghatározása Zeiss Axio Imager.M2m típusú fémmikroszkóp segítségével történt. A magasság mérésének szükségességét az adta, hogy az alakváltozás mértékének meghatározásához szükséges volt az alakítás előtti és utáni magasság pontos ismeretére. A mintán lévő nyomott sávban a lecsökkent magassága a 6. ábrán látható.

6. ábra. Minták magasságváltozása egyedülálló, két- és három egymásra helyezett lemez esetén

A Watts-Ford próba esetében a kiindulási- (h_0 ') és alakítás utáni (h_1 ') magasság ismeretében származtatható az alakváltozás mértéke(φ), melyet a következő képlet ír le [1].

$$\varphi = \frac{2}{\sqrt{3}} \ln \left(\frac{h_1 \prime}{h_0 \prime} \right) \quad . \tag{1}$$

A nyomott terület és a nyomóerő ismeretében az alakítási ellenállás (K_k), mely esetünkben megegyezik a nyomófeszültséggel (σ_f), az alábbi összefüggéssel kapható meg, ahol *w* a nyomószerszám szélessége, *w*' pedig a lemez hosszúsági mérete [2].

$$\sigma_f \equiv K_k = \frac{F_{nyomo}}{w \cdot w'} \quad . \tag{2}$$

A következő lépés során a már meghatározott alakítási ellenállás és a mért méretek alapján került az alakítási szilárdság (K_f) számításra a (3) összefüggésben leírtak szerint,

$$K_f = \sigma_f * \left(1 + \frac{\mu \cdot w}{2 \cdot h_{1'}} + \frac{h_{1'}}{4 \cdot w} \right) \quad , \tag{3}$$

ahol μ a Coulomb-féle súrlódási együttható.

3. Eredmények

A kiértékelés során minden minta esetén meghatározásra került a magasságváltozásból az alakváltozás mértéke, a nyomófeszültségből pedig az alakítási szilárdság. Az így kapott eredmények alapján ábrázolhatóvá vált a DC04-re jellemző folyásgörbe, nyomó igénybevétel esetére a magasabb alakváltozási tartományokban egy, illetve két és három egymásra helyezett lemez esetében is. Minden egyes mérés háromszor került ismétlésre a hibás mérések kiszűrésének céljából. A deformációs zóna teljes lefedése érdekében a Watts-Ford próba eredményeit illesztettük a DC04-re jellemző szakítódiagramból felvett folyásgörbére. Az így kapott görbéken azt feltételeztük, hogy az anyag húzásra és nyomásra egyformán viselkedik, azaz a 7. ábrán látható módon fésültük össze a mérési pontokat.

7. ábra. Watts-Ford próbával felvett folyásgörbék

A 7. ábrán jól látható, hogy a pontok és a pontokra illesztett görbék illeszkednek a szakítóvizsgálati eredmények által meghatározott tendenciára, illetve hozzák a folyásgörbékre jellemző karakterisztikát. A hatványos trendvonalak hozzárendelésének ötletét a Nádai et al. [6] által meghatározott hatványtörvény adta, a folyásgörbe egyenletének meghatározása okán. Az illesztést

követően a trendvonal egyenletének meghatározásával kapjuk meg a függvény paramétereit. A Nádai féle hatványtörvény a következő módon kerül kifejezésre [6]:

$$K_f = c * \varphi^n \quad , \tag{5}$$

ahol K_f az alakítási szilárdság, c az alakítási állandó, φ a valódi alakváltozás, n pedig a keményedési kitevő.

A kiértékelés során kapott egyenletekben a keményedési kitevő a Nádai et al. [6] által meghatározott 0,1-0,3 tartományon belülre esik.

Az egy lemezes eredményeken a Chermet et al. [1] által prezentált konverzió lett elvégezve, hogy egységesebb képet adjon a teljes görbe a szakítódiagramból felvett folyásgörbével. Az alakítási szilárdság kiegyenlítését követően a kompenzált ponthalmaz értékei a számított értékek 80% teszik ki. A kompenzáció alapjául a szakirodalmakban a fémes anyagok egymáson történő elmozdulása során fellépő súrlódás (μ =0,2) szolgált. Minimális további kompenzáció elvégzésével egységes, a teljes deformációs zónát lefedő folyásgörbe hozható létre mind az egy, illetve a két és három egymásra illesztett munkadarab segítségével felvett görbék által is.

A Nádai féle hatványtörvényen kívül egyéb elméletek is léteznek a folyásgörbe meghatározására. A legkisebb négyzetek módszerét felhasználva illeszthető a mérési pontokra a Swift et al. által javasolt kifejezés:

$$\sigma = K * (S_0 + \varepsilon_p)^n \quad . \tag{6}$$

A Swift elmélethez hasonlóan, szintén a legkisebb négyzetek módszerét alkalmazva illeszthető a pontokra a Hockett-Sherby féle összefüggés is:

$$\sigma = \sigma_s - \exp(-(N\varepsilon)^p) * (\sigma_s - \sigma_y) \quad . \tag{7}$$

A 8., 9., 10. ábrán a Swift és a Hockett-Sherby összefüggéssel felvett folyásgörbék láthatóak az egy-, a kettő-, illetve a három lemezes minták esetében.

8. ábra. Egy lemezes vizsgálatok folyásgörbéje a Swift és a Hockett-Sherby elmélettel számolva

9. ábra. Két lemezes vizsgálatok folyásgörbéje a Swift és a Hockett-Sherby elmélettel számolva

10. ábra. Három lemezes vizsgálatok görbéje a Swift és Hockett-Sherby elmélettel számolva

A Swift- és a Hockett-Sherby féle közelítések és a legkisebb négyzetek módszerének alkalmazásával lehetőség adódott a mérési eredmények megfelelőségének, pontosságának számszerűsítésére. A 8., 9. és 10. ábrán feltűntetésre kerülő R_{Swift}^2 és R_{HS}^2 értékek minél közelebb esnek az egységnyihez, annál pontosabb az illeszkedés.

A 3. táblázatban az R^2 értékek kerülnek összesítésre.

3. táblázat: R² értékek összegzése

	R_{Swift}^2	R_{HS}^2
1 lemezes görbe	0,962	0,972
2 lemezes görbe	0,997	0,995
3 lemezes görbe	0,981	0,980

4. Konklúzió

Cikkünkben a vékony lemezek síkalakváltozási nyomópróbával történő folyásgörbe felvételi lehetőségét vizsgáltuk. Az említett mérési módszer jól használható tömbi anyagok esetében, de a vékony lemezeknél fellépő geometriai kényszerek jellemzően a háttérbe szorítják ezt a vizsgálati lehetőséget a lemezalakításban. A kis lemezvastagságból adódó nehézségek kiküszöbölésére kétés három rétegben egymásra helyezett lemezek nyomóvizsgálatát is elvégeztük. Eredményeink alapján megállapítható, hogy a súrlódástól és egyéb befolyásoló tényezőktől mentes szakítóvizsgálati pontsorozathoz legpontosabban illeszkedő folyásgörbe a két lemezes (két lemez egymásra helyezésével kivitelezett) vizsgálatok során, a Swift összefüggés alkalmazásával nyerhető. A Swift egyenlet illesztésével matematikai módszerekkel is alátámasztásra került a nyomóvizsgálatból származó ponthalmazok és a szakítódiagram illeszkedése, és egyben az is megállapítást nyert, hogy a két lemezes folyásgörbe karakterisztikája és lefutása állhat legközelebb ahhoz az állapothoz, amely esetben a súrlódás, és a geometriai viszonyokból szükségszerűen fennálló nyíró hatás kiküszöbölése, a legjobb hatásfokkal megtörténik.

Köszönetnyilvánítás

Szeretnék köszönetet mondani a Neumann János Egyetem GAMF Műszaki és Informatikai Kar Innovatív Járművek és Anyagok Tanszék összes munkatársának, akik ötleteikkel és segítségnyújtásukkal támogatták a kísérletsorozat végrehajtását.

Irodalomjegyzék

- C. Chermette, K. Unruh, I. Peshekhodov, J. Chottin, T. Balan (2019): A new analytical method for determination of the flow curve for high-strength sheet steels using the plane strain compression test; International Journal of Material Forming 2020; <u>10.1007/s12289-019-01485-4</u>
- [2] D. Banabic, H.-J. Bunge, K. Pöhlandt, A.E. Tekkaya (2000): Formability of Metallic Materials-plastic anisotrophy, formability testing, forming limits; Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo; Springer; ISBN: 978-3-662-04013-3; <u>10.1007/978-3-662-04013-3_4</u>
- [3] M. Graf, S. Fritsch, B. Awiszus (2020): Determination of Forming Behaviour of EN AW-6060 by Different Testing Methods under Cold Bulking Forming Conditions; Chemnitz University of Technology, Chemnitz, Germany; <u>10.1016/j.promfg.2020.04.339</u>
- [4] Nuttakorn Sae-Eaw, Yingyot Aue-U-Lan (2018): Mechanical property determination for combined sheet and bulk metal forming process by plane strain compression test; King Mongkut's University of Technology North Bangkok, Thailand, <u>10.1016/j.matpr.2017.10.113</u>
- [5] dr. Horváth László (2005): Folyásgörbe meghatározás módszerei (oktatási segédlet), Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi- és Gyártástechnológiai Intézet
- [6] A. Nadai és mtsai.: Plasticity A Mechanics of the Plastic State of Matter, McGraw-Hill Book Company; New York, London, 1931, <u>10.1122/1.2116408</u>
- [7] ISD Dunaferr Hidegen hengerelt termékkatalógus 2019 http://dunaferr.hu/download/57/hidegen-hengerelt-termekkatalogus-2019
- [8] Béres G. J.; Hareancz F., Weltsch Z.: Korszerű lemezanyagok mechanikai vizsgálatai; Gradus Vol 4, No 2 329-335, 2017
- [9] M. S. Mohebbi, A. Akbarzadeh, Y.-O- Yoon, S.-K. Kim.: Flow stress analysis of ultra fine grained AA1050 by plane strain compression test; Materials Science&Engineering A; Korea, Iran; 2013