
Gradus Vol 10, No 2 (2023)  
ISSN 2064-8014  

 

  1 

DEVELOPING OF NLP MODELS BY MODEL BASED 
SOFTWARE DEVELOPMENT 

Zsolt Krutilla 0009-0000-3607-4309 1,2 

1 Department of Software Development and Application, Institute of Information Technology, University of 
Dunaújváros, Hungary 

2 Doctoral School of Applied Informatics and Mathematics, Óbuda University, Hungary 
https://doi.org/10.47833/2023.2.CSC.024  

 
Keywords: 
natural language processing, 
model based development, 
applied Informatics, 
artificial Intelligence 

Article history: 
Received 14 July 2023 
Revised 20 November 2023 
Accepted 2 December 2023 

 Abstract 
In the case of software development, we can talk about several 
methodologies, such as the waterfall model, test-driven software 
development, agile software development, but the question 
rightly arises whether software development methods in the 
traditional sense are applicable to the development of natural 
language processing language models, especially from the 
aspect of AI and dictionary-based NLP models. Learning AI 
models is substantially different from the classical software 
development process. Whereas in classical software 
development, developers explicitly describe the operation and 
behavior to the computer, in AI model learning, the models 
themselves learn from the input data. This paper presents a 
possible solution that applies the agile Scrum methodology used 
in classical software development to the development of 
dictionary-based NLP models, and identify the agile development 
opportunities in case of the machine learning-based NLP 
models. 

1 Introduction 

Since software development is a social process [1], understanding how people work together 
to create software is critical. The importance of software in our society is coupled with the difficulties 
that arise during its development in terms of understanding the business need and the application 
that is produced. [2] Generally, software development teams are brought together to develop new 
products - or to improve existing ones. The team itself usually consists of two or more software 
developers involved in the creation of a specific piece of software, each to be delivered within a 
certain timeframe, who rely on their collective skills, given that the scope, complexity and number of 
tasks required to develop modern software usually exceeds the capabilities of individual developers. 
[3] In today's modern, fast-paced world, we are increasingly demanding criteria from a development 
team that we previously thought unthinkable. This is nowadays also true for the development of 
language models, so that a shorter development time interval will be expected in the future for the 
learning and development of NLP (Natural Language Processing) models in the classical sense. In 
this context, we need to explore the possibility of using, for example, the agile software development 
methodology in the development of language models. In this article I will present the classic software 
development methodologies and their general advantages and disadvantages that I have 
experienced in my more than 14 years of development career. In addition, a dictionary-based NLP 
model based on the Agile Scrum methodology is presented too. In order to gain an insight into how 
the agile development of NLP models can be achieved, we need to summarize in broad terms the 
most popular classical software development methods. 

https://doi.org/10.47833/2023.2.CSC.024


 Zsolt Krutilla 

2 

2 Software as a product 

We often must treat software as products that we produce, and like any production technology 
[4], software "production" has its own technologies and tools. Software is treated as a product in its 
own right [5], with market value and customer requirements. As a result, development teams focus 
on the features, functionality and value of the product to create a product that meets customer and 
market needs. In the product-oriented approach [6], customer requirements, functional and non-
functional requirements, and development tasks and priorities are captured in the product backlog. 
This allows the team to select from the backlog the tasks and priorities needed for sprints. The 
software-as-a-product approach provides flexibility to manage changing customer requirements. The 
product backlog allows for flexible prioritization and consideration of customer feedback. This allows 
the team to adapt to new demands and the changing market environment. [7] Iterative development 
cycles are often used in software development, where the product is constantly evolving, and new 
versions are released. This allows for early market introduction and incorporation of customer 
feedback into subsequent versions. [8] 

3 Software development from a process perspective 

The software development process usually consists of several steps, which we can monitor 
continuously to ensure efficient and structured project implementation. [1] The general process of 
software development can be broken down into the following steps [9-11]: 

· Defining needs and requirements: in this initial phase, developers, customers and other 
stakeholders jointly define the software's goals, functionality and requirements. This is 
usually done through interviews, working groups and documentation. 

· Design: in this phase, developers create detailed designs of the software architecture, the 
relationships between components, the user interface and other important elements. 
Diagrams, such as UML diagrams and data flow diagrams, are often used in the design 
process. 

· Development: this phase is about the actual coding of the software. Based on the 
specifications developed in the design phase, developers use programming languages, 
frameworks and tools to implement the software. This phase usually includes unit testing, 
which is aimed at testing the various components (functions, classes, etc.) and identifying 
errors. 

· Testing: software testing is a key part of the development process. Testing is a key part of 
the development process. Various testing methods can be used, such as unit testing, 
integration testing, system testing and acceptance testing. 

· Release: after testing and bug fixes, the software is ready for release. This phase involves 
installing and configuring the software in a real or test environment, as well as engaging 
users and monitoring their use of the software. 

· Maintenance phase: once the software is released, further improvements are called 
software evolution or maintenance. This involves considering user feedback, bug fixes, 
updates and introducing new features to the software. 



 DEVELOPING OF NLP MODELS BY MODEL BASED SOFTWARE DEVELOPMENT 

  3 

 

Figure 1: General software development process steps [54] 

It is important to note, however, that the software development process is not a rigid linear 
process but is often iterative and agile. [12] During iterations, developers continuously receive 
feedback, improve and enhance the software based on user needs. Agile development methods 
such as Scrum or Kanban are extremely popular because of their flexibility and customer-centric 
approach. [13-14] 

These needs are usually inspired by human needs or business needs, the use/application of 
which supports a company's operations or gives it an advantage over its competitors. These needs 
can also be called the drivers of software development. Inducers of software development are factors 
that act as drivers to initiate software development. These drivers can be business needs, problems 
or opportunities that the organization identifies and wants to respond to by developing software. 

Business needs are one of the most common drivers for software development. [15] This can 
be the introduction of a new product or service that requires software. For example, a company 
wants to create a new e-commerce website for online sales. Increasing the efficiency of a company's 
processes or improving existing systems may also be a reason for software development. [16] For 
example, a transport company may develop new logistics software that automates data capture and 
tracking, reducing manual labour and increasing efficiency. Increasing competitiveness can also be 
a trigger for software development. A company can try to stand out from the competition by 
developing new, innovative software solutions. [17-18] For example, developing a smart home 
system that allows remote control and automation of home appliances. In addition to increasing 
competitiveness, changes in the business environment can also motivate software development, 
such as changes in regulations or legal requirements, a frequent change demand in the banking 
sector. 

These needs are usually part of a company's lifecycle, based on business strategy and market 
opportunities, and require software development to achieve objectives or solve problems. They are 
identified by company management, experts, market researchers or customers. The business 
needs are then usually documented in more detail and passed on to software developers, who 
then design and implement the software to meet the objectives. 

4 Software development methodologies 

Software development companies use a variety of methods and methodologies to manage 
their projects and make the software development process more efficient. 

4.1 Waterfall model 

This is the traditional linear development model, which involves the following steps: 
requirements definition, design, implementation, testing and maintenance. Each step follows a linear 
sequence, and it is usually only after the completion of each phase that it is possible to move on to 
the next phase. [19-20] 



 Zsolt Krutilla 

4 

 

Figure 2: Waterfall model [55] 

Advantages: 

· Structured and well-defined process: the steps of the development are predefined. 

· The development process is well defined and well-defined. 

· Good choice for projects with stable and well-defined requirements. 
Disadvantages: 

· Inflexibility: Difficult to adapt to changing requirements. 

· Late feedback: users only see the finished product at the end. 

· Long development cycles. 

4.2 Agile methodology 

Agile software development involves methodologies that take a more flexible and iterative 
approach to development. Some common agile methodologies include Scrum, Kanban, and 
Extreme Programming (XP). Agile methodologies divide development into several short iterations 
(sprints) in which developers receive regular feedback and continuously apply changes and 
improvements to the software. [3, 21] 



 DEVELOPING OF NLP MODELS BY MODEL BASED SOFTWARE DEVELOPMENT 

  5 

 

Figure 3: Agile software development process [56] 

Advantages: 

· Flexibility: easily adapts to changing requirements. 

· Early feedback: the product is available and repairable sooner. 

· Promote teamwork: teams can work together more effectively. 
Disadvantages: 

· Lack of structure: sometimes too much flexibility can make it difficult to manage the project. 

· Not ideal for all types of projects. 

4.3 Lean development 

Lean development aims to eliminate unnecessary work and resources from the process. This 
methodology is based on the premise that software development should be continuously improved 
and non-value-adding activities minimized. Lean development is characterized by continuous 
feedback, process optimization and shortening development time. [22] 

 

Figure 4: The process of Lean Software Deployment [57] 



 Zsolt Krutilla 

6 

Advantages: 

· Unnecessary or non-value-adding activities during development are minimized. 

· Helps to ensure that requirements remain stable and do not change abruptly. 

· Supports continuous improvement, allowing rapid iterations and continuous improvement. 

· Focus on customer needs and the frequent use of customer feedback in development. 
Disadvantages: 

· Changes and culture shifts can be time consuming. 

· Not suitable for all projects. 

· Need for continuous monitoring. 

· Lack of an appropriate culture. 

4.4 DevOps 

DevOps is a culture and a practical approach that combines application development and 
operations. DevOps aims to increase efficiency and collaboration between software development 
and software operations. Developers and operators work together to ensure faster software 
releases, high availability and reliable operations. [23-24] 

 

Figure 5: The DevOps software release process [58] 

Business needs are usually defined through communication between the company and the 
customer. Business analysts, project managers and customer service representatives help to 
assess, document and understand needs and requirements. Software developers then design and 
develop the software based on the identified needs. The project is usually managed by a project 
manager, who is responsible for planning the project, supervising the work and coordinating 
resources. Project management methods include using Gantt charts, scheduling tasks, tracking 
project status and organizing team communication. [25] 

Advantages: 

· Continuous delivery: allows frequent, automated delivery and testing. 

· Improved collaboration between developers and operators. 

· Improves product quality and stability. 
Disadvantages: 

· Requires major changes from traditional operation. 

· Requires complex infrastructure and tools. 
The choice and application of a specific method or methodology depends on the requirements 

and circumstances of the project and company. Often, companies combine or tailor methodologies 



 DEVELOPING OF NLP MODELS BY MODEL BASED SOFTWARE DEVELOPMENT 

  7 

to best fit their own development processes and needs, including plan-driven and agile 
methodologies. 

Figure 6: Plan-driven and agile development [3] 

5 Agile software development 

Agile methodologies offer a flexible and iterative approach to software development, allowing 
for rapid response to change, continuous improvement and meeting end-user needs. Agile 
methodologies are diverse and can be tailored to project-specific needs and team preferences. In 
some cases, hybrid solutions tailored to projects are also used, combining agile methodologies with 
other development frameworks or methodologies to better fit the specific characteristics of the 
projects. Agile software development methodologies, especially Scrum, are popular and widespread 
among companies for several reasons. Overall, agile methodologies allow projects to be 
implemented in a more flexible and adaptable way. As mentioned above, development teams work 
in shorter iterations (sprints) where they receive regular feedback from customers or users. This 
allows for rapid changes and revisions to the development direction as business needs change. 
Agile methodologies would focus on customers, who work closely with the development team, taking 
an active part in planning and prioritizing sprints. This allows developers to get real-time feedback 
from customers and better understand real needs. They greatly enhance transparency and 
communication between the development team and customers. Regular scrum meetings (e.g. daily 
standing reception) and end of sprint presentations allow for continuous communication and 
feedback between developers and customers. This helps developers to quickly resolve issues and 
understand the project process. 

They emphasize iterative development, where software is developed incrementally and 
incrementally. This allows early results and prototypes for customers to build on for further 
development and improvements. Teamwork and ownership among developers are strengthened. 
Teams plan and organize their work independently within sprints and take joint responsibility for 
results. This can increase team motivation and efficiency. 

5.1 Scrum 

Scrum is one of the most widely used and best-known agile methodologies. [26] In the Scrum 
framework, the project is divided into short iterations, called sprints, usually 1-4 weeks. In each sprint, 
the development team reviews the backlog (list of tasks to be completed), selects the tasks planned 
for the sprint, and commits to completing them. A daily stand-up meeting is held during the sprint 



 Zsolt Krutilla 

8 

where team members share progress and problems. At the end of the sprint, they present the work 
done and review the results achieved. 

5.2 Kanban 

Kanban is an agile methodology based on visualization. [27] On a Kanban board or virtual tool, 
cards represent development tasks. The columns of the board represent the states of the tasks, such 
as "Waiting", "In Progress" and "Done". The team reviews the board, moves the cards between the 
columns according to the progress of the tasks, and limits the number of cards on the board to 
optimize workload and minimize congestion. 

5.3 Extreme Programming (XP) 

Extreme Programming is an agile methodology that focuses on the development process and 
software quality. [28] XP emphasizes continuous feedback, small incremental development and test-
driven development. In XP, developers work in pairs, often swapping partners. In addition, XP has a 
strong emphasis on code quality, refactoring and automated testing. 

5.4 Lean Software Development 

Lean Software Development combines agility with Lean manufacturing methodology. [22] The 
principle is to maximize the creation of value for the end user while minimizing waste and 
redundancy. Lean Software Development emphasizes continuously improving processes, 
transparency, a steady workload, and small batches that are often released based on end-user 
feedback. 

The reasons described above contribute to making agile methodologies, especially Scrum, the 
preferred choice of companies in software development projects [3,8,13,21,26-28], and thus Scrum 
is also a preferred methodology in my research. There are other preferences and variants of agile 
methodologies, such as Kanban and Extreme Programming (XP) mentioned earlier, which have a 
different focus and approach, but are equally based on agile principles. 

5.5 Test Driven Development and the Scrum methodology 

The agile Scrum methodology is often combined with TDD (Test-Driven Development) [29], as 
both focus on the agility and quality of the development process. In the Scrum framework, TDD is 
usually integrated into sprints, where writing tests, implementing code and running tests are part of 
the iteration. Tests can help to monitor the progress of the development work and the client 
requirements and improve the efficiency of flexible and iterative development cycles. 

 

Figure 7: Test-Driven Development process [59] 

Test-Driven Development (TDD) is a development method that focuses on testing. The basic 
principle is that developers first write tests for the desired functionality, and only then implement the 
code to ensure that the tests run successfully. [30] Developers first write tests for the desired 
functionality, which capture the expected inputs, outputs, and expected behavior of the software. 



 DEVELOPING OF NLP MODELS BY MODEL BASED SOFTWARE DEVELOPMENT 

  9 

Initially, these defined tests will not run because the code for them has not yet been implemented, 
so as a first step, developers implement the code necessary to successfully run the tests. The code 
will be extended only as much as the tests require, thus minimizing redundant code. The tests are 
re-run with the freshly implemented code and if the tests run successfully, it means that the new 
functionality is working properly, or if the tests fail, the developers continue to work on improving the 
code and re-running the tests. 

6 "Development" of artificial intelligence (AI) based models 

Learning AI models is very different from the classical software development process. 
Whereas in classical software development, developers explicitly describe the operation and 
behavior of the computer, in AI model learning, the models learn from the input data themselves. 
[31] First, it is necessary to collect data of sufficient quantity and quality. This data can be labeled 
data, where the data is assigned an expected output or label, or unlabeled data, where there is no 
predefined output. The collected data must be prepared to train the models. This may include 
normalizing the data, ensuring scale, removing noise or filling in missing data. The appropriate AI 
model must then be chosen to solve the problem. The structure and parameters of the model must 
also be set. [32] The model is trained with the available data. This means that the data is applied to 
the model and the model iteratively fine-tunes its own weights or parameters to make the outputs as 
accurate as possible to the inputs. After training, we evaluate and validate the model. This can be 
done using separate test data or cross validation. We examine the performance of the model, such 
as accuracy, efficiency or other relevant metrics. If necessary, we can fine-tune the model in further 
iterations to achieve even better results. This may involve adjusting hyperparameters, data or model 
structure. Learning AI models is therefore based on automatic learning from training data, where 
models produce outputs based on inputs. [33-34] This is an iterative and experimental process that 
improves the performance and accuracy of the models by fine-tuning the data and the model. 

6.1 Applying Agile methodology to AI models 

So, the question rightly arises: can agile methodology (e.g. scrum) be used to teach AI models? 
In short, the answer is that yes, Scrum methodology and teaching AI models can be combined to 
effectively manage the AI project and development process, but let's look at how and at what level 
this is possible. Although Scrum was originally designed for software development projects, the Agile 
principles and the Scrum framework can be applied to teaching AI models. [35] Agile methodologies, 
such as Scrum or Kanban, are based on the principles of flexibility, rapid iterations and customer 
focus. 

Before the start of an AI project, we can create a product backlog that contains a prioritized list 
of AI models and features to be implemented in the project. This will help clarify business needs and 
project goals. In the Scrum framework, development work is divided into sprints. You can also plan 
sprints for teaching AI models, where you define the learning objectives and the work to be done. 
This includes data collection, data processing, model building and teaching. The ceremonies defined 
in the Scrum framework, such as sprint planning, daily stand-up reception and end-of-sprint 
presentation, can also be useful during the teaching process. AI developers and the team can 
communicate regularly, share development status and progress, and customers or users can provide 
feedback on the performance of the models. At the end of the sprint, an updated model or "product 
increment" is delivered as a result of the AI model learning. This allows the models to be tested, 
evaluated and further fine-tuned. Further modifications can be made based on feedback from 
customers or users. When teaching an AI model, priorities and tasks can be managed in an agile 
way. Backlog and sprint planning can be modified based on business needs and user feedback. 
Flexibility allows you to react quickly to changing circumstances and new requirements. A Jira Scrum 
board can be used to keep a record of the "project", which specifically supports an agile organization. 



 Zsolt Krutilla 

10 

 

Figure 8: Jira software – Scrum board [60] 

Learning the AI model is a complex process and using the Scrum methodology is only one 
possible approach. Depending on the nature of the AI project, the size of the team and the project 
context, other agile methodologies or hybrid solutions may be useful. The key is to incorporate agility 
and iterative development into AI project management to respond quickly to changes and achieve 
the desired results. 

There are several methodologies and approaches to agile software development that can be 
applied to AI projects, depending on the nature of the project, the size of the team and the project 
context. Kanban, for example, is an agile methodology that focuses on workflow visualization and 
process continuity and can be used in AI projects. In this methodology, development tasks are 
represented as cards on visual boards or virtual devices. The cards represent each task and indicate 
its status (e.g., "waiting", "in progress", "done"). The team moves the tasks continuously around the 
board, allowing for process transparency and a steady workload. In addition to the Kanban 
methodology, even the Lean methodology is an excellent application for an AI project, as Lean 
development focuses on minimizing waste and creating the best possible value for the end user. 
This methodology strongly emphasizes continuous improvement, customer centricity, and small 
batches released on a regular basis. 

Due to the specificities of AI projects, it is therefore often the case that Agile methodologies 
are combined with other development frameworks and methodologies, as it allows flexibility and the 
ability to meet project-specific needs. The choice of the right combination between Agile 
methodologies and AI project management is project and team driven. Project specific requirements, 
team size and skills, and client and user needs should be considered to select the most appropriate 
methodology. 

6.2 "Developing" NLP models with agile tools 

The NLP is a branch of artificial intelligence and computational linguistics that aims to enable 
machines to interpret and generate natural language. [36] This includes the recognition of entities 
(people, places, things, etc.), syntactic and semantic analysis, text categorization and the recognition 
of emotional content. It enables machines to generate texts, for example to provide answers or to 
communicate with chatbots. This process can include syntactic and semantic analysis, the use of 
language models and machine learning algorithms. In addition, NLP can be applied to machine 
translation and sentiment analysis, which allows automatic translation of texts from one language to 



 DEVELOPING OF NLP MODELS BY MODEL BASED SOFTWARE DEVELOPMENT 

  11 

another and identification of the emotional sentiment of texts. Machine translation involves text 
segmentation, the use of language models, translation rules and data analysis. 

Developers and researchers are constantly working to improve and extend NLP technologies 
to make natural language processing even more efficient and accurate. In my research position, I 
am mainly involved in research on text analytics, including classification models to categories 
incoming customer enquiries (e.g. categorizing complaint letters by MNB (Magyar Nemzeti Bank, in 
English Hungarian National Bank) subject or processing group. 

6.3 AI-based NLP models 

Natural Language Processing is closely related to AI technology, as NLP applies AI methods 
and algorithms to process and interpret natural language data. [41] NLP can therefore be seen as a 
subset of AI, which enables machines to understand and generate human language. NLP uses 
machine learning techniques applied in AI to analyse and model language data [42] Machine learning 
algorithms are used to identify language patterns, rules and features that enable machines to learn 
about language structures and the meaning of content. For example, recurrent neural networks 
(RNNs) or the generalized sequence-by-sequence model (Seq2Seq) used in deep learning can be 
effective in text translation or text generation. Natural language models are complex mathematical 
representations that can encode the meaning and structure of words, sentences and texts. Models, 
such as Word2Vec, GloVe or Transformer [44-46], can learn language vector representations and 
determine similarities or meaning relationships between words. 

6.4 Dictionary-based language models 

In the development of dictionary-based NLP models, a predefined dictionary or collection of 
terms is used to analyze texts and identify their meaning. [47] One of such models is the SPSS 
Modeler as a development environment, which is a widely used data mining and predictive analytics 
tool [48-49] and offers several features and techniques in the field of text analytics. [50] 

Text analytics allows you to analyze and interpret unstructured text data to extract valuable 
information. At my research site, the various tools of SPSS Modeler, on which my first classification 
model was built, are used extensively, so it is worthwhile to cover these features from the point of 
view of the level and spectrum of use of classical software development methodologies in the 
development of such a language model. They allow the scanning and preparation of text data which 
includes the import of text sources, the pre-processing of text (e.g. text cleaning, normalization, 
tokenization, etc.) and the structuring of data for analysis. 

 

Figure 9: SPSS modeler data reading [61] 



 Zsolt Krutilla 

12 

SPSS Modeler offers a range of text analysis techniques and algorithms to help you process 
and interpret your data. These include text tagging, term frequency calculation, synonym 
identification, categorization, sentiment analysis, entity recognition and others. This means that 
predictions and models can be created based on the analysis of text data. For example, we can 
model user preferences, customer behavior or other predictions based on textual data. The use of 
text analytics features allows users to discover and make sense of textual data. With its systematic 
analysis workflows, built-in algorithms and graphical interface, SPSS Modeler effectively supports 
text analytics projects and facilitates the extraction and exploitation of information from text data, just 
as you would in developing software in the traditional sense. 

The development of dictionary-based NLP models can consist of several steps [51-52], which 
first require data collection. This can be textual data sources, documents, websites or other sources 
that contain the terms or words on which the dictionary is built. The data may be corpora or manually 
compiled databases. After data collection, the next step is to create the dictionary. This involves 
selecting relevant terms or words and assigning synonyms, word types or other features. The 
dictionary can be manually compiled or created using automated methods based on the data 
collected. Once the dictionary is complete, the models must learn the meaning or semantics of each 
word. Dictionary-based models often also identify relationships between terms, for example, they 
may define categories or topics associated with words in the dictionary, so that the models can 
categorize texts or identify topics. 

Figure 10: SPSS Modeler IDE [53] 

The use of SPSS Modeler as a development tool greatly supports and ensures the 
development of dictionary-based NLP models, and provides a graphical interface for data 
preparation, model design and predictive analysis that is relatively simple and straightforward to use. 

7 Developing NLP models using agile methodology 

I started my engineering career as a DevOps developer, during which we built an agile team 
and introduced the agile methodology, so when I started developing dictionary-based NLP models, 
the idea to develop these models using the tools used in the agile methodology came almost 
immediately. When dictionary-based NLP models are developed using agile methodologies, they 
usually allow for flexible design where the primary goal is continuous improvement and an iterative 
approach. When developing dictionary-based NLP models, it may also be important to use iterative 



 DEVELOPING OF NLP MODELS BY MODEL BASED SOFTWARE DEVELOPMENT 

  13 

processes, where models are progressively refined and improved in response to feedback and 
customer needs. Since agile methodologies typically divide the project into sprints, specific goals 
and tasks defined in sprints can also help to ensure efficient progress and regular feedback when 
developing dictionary-based NLP models. These principles can also be applied to the development 
of artificial intelligence (AI) models. The flowchart below shows how the agile methodology can be 
applied in practice to the development of the artificial intelligence models used in our research and 
development: 

Table 1. Agile methodology can be applied in practice to the development of the artificial 
intelligence models 

1. Project initiation 
and planning 

2. Identify 
customer needs 

3. First iteration 
(Sprint) 

4. Feedback and 
iteration 

5. Further 
iterations 

The first step is to 
define the MI 
project and define 
its objectives. 

Work closely with 
customers or 
stakeholders to 
capture customer 
needs and 
requirements. 

During the first 
iteration, build an 
MI model that 
meets the initial 
requirements. 

Continuously 
communicate with 
customers or users 
and collect their 
feedback. 

Repeat the 
previous steps in 
several iterations 
to further improve 
the AI model. 

The first step is to 
start with the 
initiation of the MI 
project. 

Define goals and 
priorities for the 
first iteration of the 
project. 

The first step is to 
establish the first 
iteration. 

Modify and refine 
the models and th  
e system based on 
the first iteration. 

Continue to refine 
the models 
throughout the 
iterations based on 
customer needs 
and feedback. 

  

Develop and test 
the model to 
produce the first 
functional 
prototype. 

Regularly monitor 
and evaluate the 
performance of 
models during 
iteration cycles. 

 

6. Testing and 
validation 

7. Display and 
finalization 

8. Maintenance 
and further 

development 

9. Closure 
Evaluation 

 

The MI model is 
tested and 
validated on 
different data sets 
and scenarios. 

Make the 
completed AI 
models and system 
available to 
customers or 
users. 

Ongoing 
maintenance and 
updating of the MI 
models and system 
according to 
changing 
requirements and 
customer needs. 

Evaluate the 
results and lessons 
learned at the end 
of the project. 

 

Test the 
performance and 
reliability of the 
models. 

Prepare 
documentation and 
instructions for 
use. 

Add new ideas and 
features during 
further iterations. 

Document 
achievements and 
areas that need 
further 
improvement. 

 

Figure 11: Process steps and description of the agile AI model development 

Before using this agile methodology, the language models were developed as a traditional 
project task, which means that only the major milestones and their commitment dates were defined 
and recorded. In order to monitor the project, regular project meetings and status meetings were 
scheduled, where tasks were measured back with the development teams using an Excel-based 
action tracker. The composition of the teams (experts) was defined according to the expertise and, 
as in the waterfall model, the individual process steps were agreed within the teams concerned. We 
had used the agile methodology and matrix-type team building in classic software development, so 
after the agile implementation it was trivial for me to develop the language models based on a new 
methodology that better fit with the rest of the team, and also to rethink the team composition. This 
meant that the team composition was not only composed of model developers, but also mixed, with 



 Zsolt Krutilla 

14 

a regrouping of experts from the business domain, thus building a matrix-like agile squad that 
included agile ceremonies (e.g. daily stand up, retrospective and 2-week scrum meetings). My 
experience that an "agile matrix" organization is an organizational structure that applies agile 
methodologies and adopts a different approach to work than classical hierarchical organizations. An 
agile matrix organization can have several advantages over a classical hierarchical organization, as 
it allows for faster response to changing market conditions and better collaboration between teams. 
The biggest advantage of an agile organization is that they facilitate faster decision making, as 
decisions are made by teams on the ground, without long hierarchical approval processes. There is 
a strong emphasis on teamwork and effective communication. Experts work directly together, which 
increases problem-solving ability and reduces communication barriers. 

 
When developing dictionary-based NLP models, regular feedback, tests and user feedback 

can be used to refine and improve the models. As in traditional software development, the use of 
agile methodologies in NLP model development allows developers to be flexible to customer needs, 
to continuously develop and refine dictionary-based NLP models, and to receive direct feedback 
from customers during the development process. This methodology can facilitate the development 
of more efficient and effective dictionary-based NLP models. In the field of language models, 
however, we can talk not only about dictionary-based language models, but also about the highly 
successful AI-based models, where the question of whether classical software development 
methodologies (e.g. scrum) can be used to teach AI-based models is also an interesting one. 
However, it is important to first clarify the difference between AI and dictionary-based NLP models, 
as their "development" is different. 

 

Figure 12: Difference between the AI-based and Dictionary-based NLP model architecture [62] 

AI-based models are based on prior learning, where they learn language structures and 
features from large amounts of raw text and are thus able to generate and make predictions about 
textual data. Dictionary-based NLP models, on the other hand, rely on predefined dictionaries, in 
which the meanings, properties and other information of words are predefined. AI-based models are 
highly flexible and capable of discovering linguistic patterns and meanings without relying on pre-
defined rules or dictionaries. This allows them to handle language tasks for which there is no prior 
dictionary or definition. Dictionary-based NLP models, on the other hand, rely on specific dictionaries 
and can only operate based on predefined words and meanings. The AI bases models requires a 



 DEVELOPING OF NLP MODELS BY MODEL BASED SOFTWARE DEVELOPMENT 

  15 

large amount of pre-learned data and computational resources to operate efficiently, and their 
generalization ability is stronger because they learn a wide range of language structures and 
features. Dictionary-based NLP models, on the other hand, rely on less data, as dictionaries are 
generally smaller and require fewer resources to operate. Overall, AI-based models have greater 
flexibility and generalization capabilities, while dictionary-based NLP models are more specific and 
rely on predefined dictionaries. The choice depends on the specific task, the amount of data available 
and the objectives, and the application of a method tailored to the needs of a project or application 
may be optimal. 

8 Conclusion 

The development of the NLP model using agile methodologies has brought many benefits. 
NLP model development is often a project with complex and changing requirements, and the agile 
approach allows flexibility to respond to changing requirements. The results of the applied 
methodology are summarized in the table below: 

Table 2. Result of the applied agile NLP model development 

Advantages Disadvantages 

Agile methodologies allow rapid prototyping to 
validate initial concepts of the NLP model. 

Agile development processes can sometimes seem 
chaotic and lead to a loss of control. Managing agile 
projects requires good leadership and effective 
coordination of teams. 

Customer needs and data often change during NLP 
projects. Agile methodologies allow for flexibility in 
responding to these changes, enabling project 
management based on the most up-to-date 
requirements. 

They may tend to develop rapid prototypes and 
short-term solutions, which can lead to long-term 
technical debt. 

Agile methodologies continuously incorporate 
customer feedback and fresh requirements into the 
development process. 

Changing requirements and iterations can increase 
the complexity and cost of projects, especially if 
they are not properly planned and controlled. 

Agile methodologies promote collaboration and 
effective communication between different 
professionals such as developers, designers, data 
analysts and domain experts. 

The high pace and density of iterations in agile 
projects can increase workload and lead to team 
burnout. 

Enable early feedback from users or customers, 
allowing the model to be refined and improved to 
meet current needs and expectations. 

Agile methodologies are not ideal for all projects. 
For complex, well-defined and long-term projects, 
traditional project management methods may be 
more effective. 

Allow continuous testing and validation to ensure 
the quality and performance of the model. Errors 
are detected early and immediate corrections are 
possible. 

Maintaining quality standards can be challenging as 
priorities are constantly changing and testing 
timescales can be tight. 

An agile organizational structure creates an 
environment where teams have more autonomy 
and are accountable for their tasks. This increases 
staff motivation and contributes to better results. 

  

Allow the model to be continuously improved and 
maintained after the project is completed. This 
keeps the model up-to-date and efficient. 

  

Based on the information and methodologies presented in this article, we can say that the 
principles of scrum, such as sprints, product and sprint backlog, can be effective in teaching GPT 
models. The agile scrum methodological aspects can be applied to the teaching of GPT models as 
follows, since we can apply the concepts in an equivalent way to GPT models. When teaching GPT 
models, the desired features, suggestions for improving the performance of the model and 



 Zsolt Krutilla 

16 

development objectives can be recorded in the product backlog. The backlog can be prioritized, and 
the scrum team can select tasks from the backlog during sprints. During the sprints, the scrum team 
works on specific tasks to progress the learning of the GPT model. At the end of each sprint, progress 
and lessons learned are evaluated. At the beginning of each sprint, the scrum team selects the tasks 
from the product backlog that will be executed in the sprint. These tasks will be included in the sprint 
backlog, in which the tasks, expected results and required resources are described in detail. During 
the training of the GPT models, the scrum team holds a Daily Scrum meeting where the results of 
the previous day, current tasks and possible obstacles are discussed. This gives the team the 
opportunity to coordinate and keep up to date on the development process. 

Applying agile methodologies to NLP model development can help increase project efficiency, 
achieve customer satisfaction and improve model quality in the face of changing requirements. It is 
important to understand and clarify, however, that agile methodologies are not applicable to all 
projects, and it may be important to combine agile and traditional methodologies in the development 
of NLP models or to select the best approach based on the project specifics. Good planning, well-
functioning teamwork and good project management can be essential for success. 

References 

[1] Sawyer, S., & Guinan, P. J. (1998). Software development: Processes and performance. IBM systems journal, 
37(4), 552-569. 

[2] Goble, C. (2014). Better software, better research. IEEE Internet Computing, 18(5), 4-8. 

[3] Sommerville, I. (2007). Sommerville: Software Engineering. 

[4] Bosch, J. (2001, May). Software product lines: organizational alternatives. In Proceedings of the 23rd International 
Conference on Software Engineering. ICSE 2001 (pp. 91-100). IEEE. 

[5] Weiss, D. M., & Lai, C. T. R. (1999). Software product-line engineering: a family-based software development 
process. Addison-Wesley Longman Publishing Co., Inc. 

[6] Kadmiry, M. (2021). The comparison between the process-oriented approach and the product-oriented approach in 
teaching writing the case of Moroccan EFL students in preparatory classes for the grandes ecoles. Arab World 
English Journal (AWEJ) Volume, 12. 

[7] Sedano, T., Ralph, P., & Péraire, C. (2019, May). The product backlog. In 2019 IEEE/ACM 41st International 
Conference on Software Engineering (ICSE) (pp. 200-211). IEEE. 

[8] Larman, C. (2004). Agile and iterative development: a manager's guide. Addison-Wesley Professional. 

[9] Zahran, S. (1998). Software process improvement: practical guidelines for business susccess. Addison-Wesley 
Longman Ltd.. 

[10] Balsamo, S., Di Marco, A., Inverardi, P., & Simeoni, M. (2004). Model-based performance prediction in software 
development: A survey. IEEE Transactions on Software Engineering, 30(5), 295-310. 

[11] Budgen, D. (2003). Software design. Pearson Education. 

[12] Szalvay, V. (2004). An introduction to agile software development. Danube technologies, 3. 

[13] Stoica, M., Mircea, M., & Ghilic-Micu, B. (2013). Software development: agile vs. traditional. Informatica Economica, 
17(4). 

[14] Kumar, G., & Bhatia, P. K. (2012). Impact of agile methodology on software development process. International 
Journal of Computer Technology and Electronics Engineering (IJCTEE), 2(4), 46-50. 

[15] Rodríguez, P., Markkula, J., Oivo, M., & Garbajosa, J. (2012). Analyzing the drivers of the combination of lean and 
agile in software development companies. In Product-Focused Software Process Improvement: 13th International 
Conference, PROFES 2012, Madrid, Spain, June 13-15, 2012 Proceedings 13 (pp. 145-159). Springer Berlin 
Heidelberg. 

[16] Kasim, T., Haracic, M., & Haracic, M. (2018). The improvement of business efficiency through business process 
management. Economic Review: Journal of Economics and Business, 16(1), 31-43. 

[17] Vanhaverbeke, W., & Chesbrough, H. (2014). A classification of open innovation and open business models. New 
frontiers in open innovation, 6, 50-68. 

[18] Sakas, D., Vlachos, D., & Nasiopoulos, D. (2014). Modelling strategic management for the development of 
competitive advantage, based on technology. Journal of Systems and Information Technology, 16(3), 187-209. 



 DEVELOPING OF NLP MODELS BY MODEL BASED SOFTWARE DEVELOPMENT 

  17 

[19] Petersen, K., Wohlin, C., & Baca, D. (2009). The waterfall model in large-scale development. In Product-Focused 
Software Process Improvement: 10th International Conference, PROFES 2009, Oulu, Finland, June 15-17, 2009. 
Proceedings 10 (pp. 386-400). Springer Berlin Heidelberg. 

[20] Adenowo, A. A., & Adenowo, B. A. (2013). Software engineering methodologies: a review of the waterfall model 
and object-oriented approach. International Journal of Scientific & Engineering Research, 4(7), 427-434. 

[21] Reifer, D. J. (2002). How good are agile methods? IEEE software, 19(4), 16-18. 

[22] Poppendieck, M., & Cusumano, M. A. (2012). Lean software development: A tutorial. IEEE software, 29(5), 26-32. 
DOI: 10.1109/MS.2012.107 

[23] Jabbari, R., bin Ali, N., Petersen, K., & Tanveer, B. (2016, May). What is DevOps? A systematic mapping study on 
definitions and practices. In Proceedings of the Scientific Workshop Proceedings of XP2016 (pp. 1-11). 

[24] Banica, L., Radulescu, M., Rosca, D., & Hagiu, A. (2017). Is DevOps another project management methodology? 
Informatica Economica, 21(3). 

[25] White, D., & Fortune, J. (2002). Current practice in project management—An empirical study. International journal 
of project management, 20(1), 1-11. DOI.: 10.1016/S0263-7863(00)00029-6 

[26] Schwaber, K. (1997). Scrum development process. In Business Object Design and Implementation: OOPSLA’95 

Workshop Proceedings 16 October 1995, Austin, Texas (pp. 117-134). Springer London. 

[27] Kirovska, N., & Koceski, S. (2015). Usage of Kanban methodology at software development teams. Journal of 
applied economics and business, 3(3), 25-34. 

[28] Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software development, and extreme 
programming: the state of research. Journal of Database Management (JDM), 16(4), 88-100. 

[29] Aggarwal, V., & Singhal, A. (2019). Empirical study of test-driven development with scrum. In Advances in 
Computing and Data Sciences: Third International Conference, ICACDS 2019, Ghaziabad, India, April 12–13, 
2019, Revised Selected Papers, Part II 3 (pp. 13-21). Springer Singapore. DOI: 10.1007/978-981-13-9942-8_2 

[30] Hammond, S., & Umphress, D. (2012, March). Test driven development: the state of the practice. In Proceedings of 
the 50th Annual Southeast Regional Conference (pp. 158-163). 

[31] Chen, B., Jiang, J., Wang, X., Wan, P., Wang, J., & Long, M. (2022, February). Debiased Self-Training for Semi-
Supervised Learning. In Advances in Neural Information Processing Systems. 

[32] Wiyono, S., & Abidin, T. (2019). Comparative study of machine learning KNN, SVM, and decision tree algorithm to 

predict student’s performance. International Journal of Research-Granthaalayah, 7(1), 190-196. 

[33] Learning, D. (2020). Deep learning. High-dimensional fuzzy clustering. 

[34] Kelleher, J. D. (2019). Deep learning. MIT press. 

[35] Kristiadi, D. P., Sudarto, F., Sugiarto, D., Sambera, R., Warnars, H. L. H. S., & Hashimoto, K. (2019, November). 
Game Development with Scrum methodology. In 2019 International Congress on Applied Information Technology 
(AIT) (pp. 1-6). IEEE. 

[36] Liddy, E. D. (2001). Natural language processing. 

[37] Chopra, A., Prashar, A., & Sain, C. (2013). Natural language processing. International journal of technology 
enhancements and emerging engineering research, 1(4), 131-134. 

[38] Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261-266. 

[39] Jiang, K., & Lu, X. (2020, November). Natural language processing and its applications in machine translation: A 
diachronic review. In 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI) (pp. 
210-214). IEEE. DOI: 10.1109/IICSPI51290.2020.9332458 

[40] Abbaszade, M., Salari, V., Mousavi, S. S., Zomorodi, M., & Zhou, X. (2021). Application of quantum natural 
language processing for language translation. IEEE Access, 9, 130434-130448. DOI: 
10.1109/ACCESS.2021.3108768 

[41] Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., & Huang, X. (2020). Pre-trained models for natural language processing: 
A survey. Science China Technological Sciences, 63(10), 1872-1897. 

[42] Khan, W., Daud, A., Nasir, J. A., & Amjad, T. (2016). A survey on the state-of-the-art machine learning models in 
the context of NLP. Kuwait journal of Science, 43(4). 

[43] Lopez, M. M., & Kalita, J. (2017). Deep Learning applied to NLP. arXiv preprint arXiv:1703.03091. 

[44] Afshinpour, B., Groz, R., Amini, M. R., Ledru, Y., & Oriat, C. (2020, December). Reducing Regression Test Suites 
using the Word2Vec Natural Language Processing Tool. In SEED/NLPaSE@ APSEC (pp. 43-53). 

https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1016/S0263-7863(00)00029-6
https://doi.org/10.1109/IICSPI51290.2020.9332458
https://doi.org/10.1109/ACCESS.2021.3108768


 Zsolt Krutilla 

18 

[45] Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In 
Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-
1543). 

[46] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is 
all you need. Advances in neural information processing systems, 30. 

[47] Das Dawn, D., Khan, A., Shaikh, S. H., & Pal, R. K. (2022). A dictionary-based model for bengali document 
classification. Applied Intelligence, 1-20. 

[48] McCormick, K., & Salcedo, J. (2017). IBM SPSS Modeler essentials: Effective techniques for building powerful data 
mining and predictive analytics solutions. Packt Publishing Ltd. 

[49] Wendler, T., & Gröttrup, S. (2016). Data mining with SPSS modeler: theory, exercises and solutions. Springer. 

[50] Achananuparp, P. SOCIAL MEDIA & PUBLIC OPINION: EFFECTIVENESS OF SENTIMENT TEXT ANALYTICS 
ON SOCIAL MEDIA DATA. 

[51] Reveilhac, M., & Morselli, D. (2022). Dictionary-based and machine learning classification approaches: a 
comparison for tonality and frame detection on Twitter data. Political Research Exchange, 4(1), 2029217. 

[52] Song, M., Yu, H., & Han, W. S. (2015). Developing a hybrid dictionary-based bio-entity recognition technique. BMC 
medical informatics and decision making, 15(1), 1-8. 

[53] Figure reference – IBM SPSS Modeler: https://www.ibm.com/products/spss-modeler (downloaded: 24/10/2023) 

[54] Figure reference – Cleveroad: https://www.cleveroad.com (downloaded: 24/10/2023) 

[55] Figure reference – GeeksforGeeks: https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/ 
(downloaded: 24/10/2023) 

[56] Figure reference – ProMan Consulting Kft.: https://promanconsulting.hu/mi-az-agilis-modszertan-legelterjedtebb-
agilis-modszertanok/ (downloaded: 24/10/2023) 

[57] Figure reference – TMS: https://tms-outsource.com/blog/posts/lean-software-development/ (downloaded: 
24/10/2023) 

[58] Figure reference – BairesDev: https://www.bairesdev.com/devops/ (downloaded: 24/10/2023) 

[59] Figure reference – Marsner: https://marsner.com/blog/why-test-driven-development-tdd/ (downloaded: 24/10/2023) 

[60] Figure reference – Atlassian: https://www.atlassian.com/software/jira/features (downloaded: 24/10/2023) 

[61] Figure reference – IBM Developer: https://developer.ibm.com (downloaded: 24/10/2023) 

[62] Figure reference – MDPI: https://www.mdpi.com/2079-9292/9/3/483 (downloaded: 24/10/2023) 

https://www.ibm.com/products/spss-modeler
https://www.cleveroad.com/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://promanconsulting.hu/mi-az-agilis-modszertan-legelterjedtebb-agilis-modszertanok/
https://promanconsulting.hu/mi-az-agilis-modszertan-legelterjedtebb-agilis-modszertanok/
https://tms-outsource.com/blog/posts/lean-software-development/
https://www.bairesdev.com/devops/
https://marsner.com/blog/why-test-driven-development-tdd/
https://www.atlassian.com/software/jira/features
https://developer.ibm.com/
https://www.mdpi.com/2079-9292/9/3/483

