

KISMÉRETŰ LÉGCSAVAROK AERODINAMIKAI JELLEMZŐINEK MÉRÉSE ÉS SZÁMÍTÁSA

MEASUREMENT AND CALCULATION OF THE AERODYNAMIC CHARACTERISTICS OF SMALL PROPELLERS

Papp Klaudia 0000-0002-7505-6944 1 *

¹ Innovatív Anyagok és Járművek Tanszék, GAMF Műszaki és Informatikai Kar, Neumann János Egyetem, Magyarország

https://doi.org/10.47833/2023.1.ENG.003

Kulcsszavak:

Aerodinamika Autogíró Légcsavar Szárnyprofil Hatásfok

Keywords:

Aerodynamics Autogyro Propeller Wing profile Efficiency

Cikktörténet:

Beérkezett 2022. október 10. Átdolgozva 2022. október 31. Elfogadva 2022. november 5.

Összefoglalás

Kutatásomban az autogírók vontatását, stabilizálását végző légcsavarok egyik vizsgálati lehetőségét mutatom be. A vizsgálathoz egy, a mai korban már kevésbé használatos profilt választottam alapul, melynek számos előnyös tulajdonsága van autogírókon stabilizálás céljából történő alkalmazásuk esetén. A vizsgálat célja, hogy egy olyan profillal rendelkező légcsavar modellt hozzak létre, amely hatásfoka pozitív és negatív forgásirányban is a lehető legenergiahatékonyabb.

Abstract

In my research, I present one of the possible ways of testing the propellers used to tow and stabilize the autogiro. For this study, I have chosen a profile, which is less used today, and which has several advantages when used for stabilising autograders. The aim of the study is to create a propeller model with a profile that is as energy efficient as possible in both positive and negative directions of rotation.

1. Bevezetés

A különböző helikoptereknél, autogíróknál rendkívül fontos az, hogy stabilizálás céljából olyan légcsavarokkal szereljék fel, melyek a pozitív irányú forgás mellett a negatív irányú forgása során is kellően "jó" hatásfokkal rendelkezzen. Ezeknél a légi járműveknél általában fix állásszögű légcsavarokat használnak, amik igazán csak egy adott irányba tudnak forogni, és így a hatásfok csak abba az egy irányba való forgás közben lesz igazán megfelelő. Létezhet olyan fix állásszögű légcsavar is, aminek a kialakítása végett az ellenkező irányú forgatás esetén sem lesz annyira "rossz" a hatásfok. Ilyen légcsavar kiválasztása a cél, ugyanis ezen légi járműveknél előre haladás közben a két oldalsó szárnynál lévő két kisebb stabilizáló légcsavar ugyanabba a pozitív irányba forog, viszont, ha álló helyzetben kívánjuk működtetni a járművet akkor a megfelelő kiegyenlítések végett az egyik stabilizáló légcsavart ellentétes irányba kell forgatni. Ez azt jelenti, hogy rendellenes működésre kényszerítjük, így a hatásfoka közel sem lesz olyan "jó", mint a pozitív irányba való forgatás esetén.

2. A légcsavar megtervezése

Kutatásaim során több előzetes mérést végeztem a mai korban leginkább használatos NACA profillal rendelkező légcsavarokkal. Ezeknél a szelvényeknél az állásszöget a húrvonaltól számítva

határozzák meg. Ennek a szögnek a meghatározása komplikált, valamint a lapátok gyártása se egyszerű. Előnye, hogy a húrvonal végpontjai könnyen azonosíthatók. Méréseim során bebizonyosodott, hogy autogírók energiahatékony működtetéséhez nem túl optimális az ezen profillal rendelkező légcsavarok, ugyanis negatív forgásirány esetén a légijármű hatásfoka merőben alacsony. [7] Ezért az általam modellezett légcsavar profiljának egy CLARK-Y profilt választottam, amely az 1. ábrán látható.

1. ábra. CLARK-Y profil [3]

A CLARK-Y profiloknak az alsó kontúrja még szinte teljesen egyenes, így a szelvények kialakításánál ez a vonal tekinthető bázisnak. A profilok állásszögei is ettől az alsó kontúr vonal helyzetétől, az alapvonaltól függően határozható meg. Jellemzőjük az egyszerű gyárthatóság. [1] [4]

A légcsavar modellezése előtt a profil fő paramétereit határoztam meg, majd ezeket a profilokat koordináta rendszerben is ábrázoltam. A profilt jellemző értékek kiválasztásánál a [3] szakirodalomban jegyzett mérések eredményeit vettem alapul. Ebben a mérési feljegyzésben a profilokat jellemző méreteket dimenziótlan aránypárok függvényes ábrázolásában adták meg. Az általam választott CLARK-Y 5868-9-es profilt jellemző aránypárok függvényes ábrázolása a 2. ábrán látható.

2. ábra. A CLARK-Y 5868-9-es profil alakját jellemző arányszámok [3]

A 2. ábrán a b/D aránypár a profil húr megoszlását jellemzi, a h/b aránypár a profil vastagságát, a p/D pedig az adott sugárhoz tartozó profil elcsavarás mértékét, amely egységes megállapodás alapján a 75%-os sugárhoz tartozó profil beállítási szöge 45°.

A légcsavar forgókörátmérőjét 14"-ra (355,6 mm) választottam meg, amihez a fenti az adatok alapján menetemelkedést kellett választanom. Az 5. ábrán 4 különböző beállítási szögben vizsgált légcsavar profilokat jellemző aránypárok adatai láthatók. Ez a 15°, 25°, 35° és 45°.

Az aránypárok segítségével egy átlagos beállítási szöget kiválasztva, valamint a már korábban meghatározott fix méretű forgókörátmérő ismeretében ki lehet számolni a légcsavar egyes profiljainak geometriai méreteit.

Átlagos beállítási szögnek a 15°-ot választottam, így a profilok méreteinek meghatározásakor ehhez a szöghöz tartozó p/D aránypárokat választottam. Ezzel az átlagos beállítási szöggel egy kisebb menetemelkedésű légcsavar alakítható ki. A 15°-os átlag beállítási szöghöz tartozó aránypárok figyelembe vételével a 14"-os forgókörátmérővel rendelkező légcsavar profiljainak geometriai adatai az 1. táblázatban látható értékek szerint alakul.

	Sugár		Vectoroór	Beállítási szög – 15°					
	(mm)	(mm)	(mm)	Menetemelkedés (mm)	Beállítási szög (radián)	Beállítási szög(°)			
1. profil	36	13,5128	5,4	160,0	0,716218367	35,6			
2. profil	44	16,002	6,4	184,9	0,66210409	33,5			
3. profil	53	18,8468	8,7	206,2	0,615417264	31,6			
4. profil	62	21,6916	5,2	224,0	0,572974694	29,8			
5. profil	71	24,5364	4,4	227,6	0,509310839	27,0			
6. profil	80	26,3144	3,7	224,0	0,445646984	24,0			
7. profil	89	27,0256	3,2	220,5	0,3947159	21,5			
8. profil	98	26,67	2,9	220,5	0,358832636	19,7			
9. profil	107	25,9588	2,6	220,5	0,328929917	18,2			
10. profil	116	24,892	2,4	220,5	0,303627615	16,9			
11. profil	124	23,4696	2,2	222,3	0,284213638	15,9			
12. profil	133	22,0472	2,0	224,0	0,26738819	15,0			
13. profil	142	19,9136	1,8	225,8	0,252665924	14,2			
14. profil	151	17,78	1,5	227,6	0,239675689	13,5			
15. profil	160	16,002	1,3	229,4	0,228128813	12,9			
16. profil	169	13,5128	1,1	231,1	0,217797398	12,3			

1. Táblázat. A CLARK-Y 5868-9-es profil alakját jellemző méretek 15°-os átlag beállítási szög esetében

Az 1. táblázatban szereplő menetemelkedések profilonként változnak. A lemodellezni kívánt légcsavar szabványos méretmegadásához ezen menetemelkedések átlagát adtam meg, ami 216,8 mm, tehát 9".

A szabványos előírás szerint a forgókörátmérő felének a 75%-nál lévő profil 45°-os beállítási szögön van. Ez a szabványos érték könnyen meghatározható koordináta rendszerben. Esetemben a 75%-nál lévő profil a 12. profil. A légcsavar még egyszerűbb modellezése érdekében a 12. profilnál lévő beállítási szöget 0°-nak vettem, ami 15°-al kevesebb, mint az ehhez a profilhoz tartozó beállítási szög. Ezért a többi profilhoz tartozó beállítási szöget is 15°-al csökkentettem.

Annak érdekében, hogy a modellezés gyorsabban elvégezhető legyen, a fenti táblázatban felsorolt 16 db profilból kiválasztottam 9-et, amelyeket ábrázoltam. A kiválasztott profilok adatai a 2. táblázatban láthatók, a már 15°-al korrigált beállítási szöggel.

	1. profil	3. profil	5. profil	7. profil	9. profil	11. profil	12. profil	14. profil	16. profil
Sugár (m)	0,0356	0,0533	0,0711	0,0889	0,1067	0,1245	0,1334	0,1511	0,1689
Húrhossz (m)	0,0135	0,0189	0,0245	0,0270	0,0259	0,0235	0,0221	0,0178	0,0135
Beállítási szög (°)	20,6	16,6	12	6,5	3,2	0,9	0	-1,5	-2,7

2. Táblázat. Az általam lemodellezett légcsavar geometriai adatai

Ezen profilok alsó- és felső kontúrvonalainak koordináta pontjait a [3] szakirodalom által meghatározott alsó- és felső koordináta pontok és a maximális alsó- és felső koordináta pontok arányaival az adott profil húrhossz arányaitól függően határoztam meg.

Ezeket az arányszámokat szemlélteti a 3. táblázat.

Húrhossz helyzete	0,025	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
Felső koordináta pont	0,55	0,67	0,81	0,96	1	0,99	0,93	0,83	0,69	0,52	0,34
Maximális koordináta pont											
Alsó koordináta pont	0.12	0.09	0.04	0.01	0	0	0	0	0	0	0
Maximális koordináta pont	0,13	0,00	0,04	0,01	0	0	0	0	0	U	0

3. Táblázat. A CLARK-Y 5868-9 profil alsó- és felső kontúrpontjainak arányai

A 3. táblázatban feltűntetett arányszámokkal a 2. táblázatban kiválasztott 9 db profil geometriai méretei alapján meghatároztam ezeknek a profiloknak a koordináta rendszerben való elhelyezkedését.

2.1. Légcsavar modellezése

Ezt követően a profilok ponthalmazait számítógéppel támogatott tervező rendszerbe (Inventor) behívva megalkottam a légcsavar 3D modelljét, melynek képe a 3. ábrán látható.

3. ábra. A modellezett légcsavar

Az ábrán látható légcsavar egy 14"x9"-os (355,6 mm x 216,8 mm) légcsavar. Enyhébb csavarodása végett a feltételezéseim szerint kedvezőbb hatásfokot fog eredményezni mind pozitív, mind pedig negatív forgásirányba, mint egy nagyobb menetemelkedéssel rendelkező légcsavar.

2.2. Modellezett légcsavar szimulációs mérése

Az imént lemodellezett légcsavar aerodinamikai jellemzőit szimulációs programok segítségével vizsgáltam pozitív és negatív forgásirányában is.

Először a légcsavar fő profiljáról 2D szimulációkat futtatam le, ezzel vizsgálva a profilra ható aerodinamikai hatásokat előrehaladásnál. [9]

A 4. ábrán látható a profilra ható áramlási sebességek nagysága 20 m/s-os előrehaladási sebességnél. A haladási irányt a nyíl jelzi.

4. ábra. A profilra ható áramlási sebességek nagysága

Ezt követően a modellezett légcsavart vizsgáltam a szimulációs programban, először a légcsavart pozitív forgásirányába, majd negatív irányába forgatva.

Az 5. ábrán jól látható, hogy előrehaladás közben a légcsavar előtt és után milyen légáramlatok alakulnak ki. Míg a légcsavar előtt egyenletes, utána már örvénylő áramlás figyelhető meg. [5]

5. ábra. A 14"x9"-os légcsavar előtt és után kialakuló légáramlatok

A 6. ábrán látható a légcsavaron kialakuló légátáramlási sebességek eloszlása.

6. ábra. A 14"x9"-os légcsavaron kialakuló légátáramlási sebességeloszlás

Jól megfigyelhető, hogy a légcsavar középpontjától a forgókörátmérőn kifelé haladva a levegő átáramlási sebessége egyre növekszik. A lapátvégeken így kialakulhat akár 225,5 m/s-os sebesség is. [6] [8]

A légcsavart 3916, 6045 és 8212-es fordulatszámon, pozitív és negatív forgásirányba való forgatással vizsgáltam, előrehaladási sebesség mellett.

A szimulációs mérések eredményei a 4. táblázatban láthatók.

Fordulatszám	Szögsebesség (rad/s)	Tolóei	rő (N)	Nyomaté	ek (N*m)	Teljesítmény (W)		
(f/p)		pozitív irány	negatív irány	pozitív irány	negatív irány	pozitív irány	negatív irány	
3916	410	7,80	5,80	0,18	0,11	73,80	45,10	
6045	633	15,84	11,81	0,58	0,38	367,14	240,54	
8212	860	25,29	22,35	0,84	0,77	722,40	662,20	

4. Táblázat. A 14"x9"-os légcsavar szimulációs mérése során kapott eredmények

A lemodellezett légcsavar pozitív és negatív forgásirányban keletkező hatásfokait a 3 fordulatszámon mért eredmények átlagaiból határoztam meg.

Így a pozitív forgásirányban keletkező propulziós hatásfok eredménye az (1) összefüggésben, negatív forgásirányban keletkezőé pedig a (2) összefüggésben látható.

$$\eta_{14"x9",\text{pozit}\acute{i}v} = \frac{T_{\acute{a}tl} \cdot V}{P_{\acute{a}tl}} = \frac{16,98 \cdot 20}{387,81} = 87,57\%$$
(1)

$$\eta_{14"x9",\text{negativ}} = \frac{T_{\acute{a}tl} \cdot V}{P_{\acute{a}tl}} = \frac{13,32 \cdot 20}{315,95} = 84,32\%$$
(2)

3. Következtetés

Célom az volt, hogy mérésekkel egy olyan profillal rendelkező, autogíróknál stabilizálást végző légcsavart profilját határozzam meg, mely megfelelő hatásfokkal rendelkezik mind az előrehaladás során alkalmazott pozitív forgásirányban, mind a lebegő fázisban fordított, negatív forgásirányban.

Előzetes statikus mérések során beigazolódott, hogy egy kisebb menetemelkedéssel rendelkező légcsavar jobb hatásfokkal képes működni mind pozitív, mind negatív forgásirányba. A statikus mérések során vizsgált NACA profilú légcsavarok hatásfokai pozitív, illetve negatív forgásirányban az 5. táblázatban láthatók.

5. Táblázat. A statikus mérések során vizsgált NACA profilú légcsavarok hatásfokai

Légcsavar mérete	Hatásfok pozitív forgásirányban	Hatásfok negatív forgásirányban		
14"x12"	84,0%	82,2%		
15"x10"	86,0%	83,5%		

Ezután meghatároztam a feltételeknek eleget tevő profilt (CLARK-Y 5868-9), amiből 3D tervezői programban megalkottam a légcsavar modelljét, amely egy 14"x9"-os (355,6 mm x 216,8 mm) méretekkel rendelkező légcsavar.

Ezt követően szimulációs vizsgálatnak vetettem alá a modellt. A szimulációk során kapott eredmények kedvező értékeket mutattak mindkét forgásirányban, amelyek azt a feltételezésemet támasztják alá, miszerint autogíróknál egy kisebb menetemelkedésű stabilizáló légcsavart használva az autogíró összhatásfoka kedvezőbb lenne, mint az amúgy erre a célra használatos NACA profilú stabilizáló légcsavarokkal. Ennek nem csak az anyagiakra nézve lenne pozitív irányú vonzata, hanem a környezetre nézve is. A jobb hatásfokkal működő légi járművek kevesebb energiát igényelnek repülés közben, ezzel környezet kímélőbb működést elérve.

Irodalomjegyzék

- [1] Rohács József, Gausz Zsanna, Gausz Tamás: Aerodinamika. Typotex kiadó, Budapest, 2012.,
- [2] Ning, Z. (2018). Experimental investigations on the aerodynamic and aeroacoustic characteristics of small UAS propellers (Doctoral dissertation, Iowa State University). 12. 19. old.

- [3] Biermann, D., & Hartman, E. P. (1938). Tests of Five Full-scale Propellers in the Presence of a Radial and a Liquidcooled Engine Nacelle: Including Tests of Two Spinners (No. 641-642). National Advisory Committee for Aeronautics. – 593. old.
- [4] Gausz Tamás: Légcsavarok. Budapest, 2015. 1. 4. old.
- [5] Gamble, D., & Arena, A. (2010, January). Automated dynamic propeller testing at low Reynolds numbers. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (p. 853). DOI: 10.2514/6.2010-853
- [6] Gili, P. A., & Battipede, M. (2001). Experimental validation of the wing dihedral effect using a whirling arm equipment. Journal of aircraft, 38(6), 1069-1075. DOI: 10.2514/2.2874
- [7] Itoh, Y., & Satoh, A. (2018, October). Measurement of Propeller Characteristics at a Negative Advance Ratio Using a Whirling Arm Facility. In Asia-Pacific International Symposium on Aerospace Technology (pp. 1169-1188). Springer, Singapore.
- DOI: 10.1007/978-981-13-3305-7_93
- [8] Dr. Gausz Tamás: Bevezetés a forgószárnyak aerodinamikájába. Budapest, 2015. 28. 29.
- [9] Céspedes, J. F., & Lopez, O. D. (2019). Simulation and validation of the aerodynamic performance of a quadcopter in hover condition using overset mesh. In AIAA Aviation 2019 Forum (p. 2824). DOI: 10.2514/6.2019-2824