

PA – NANOKOMPOZITOK IZOTERM KRISTÁLYOSÍTÁSÁNAK VIZSGÁLATA

INVESTIGATION OF ISOTHERMAL CRYSTALLISATION OF PA NANOCOMPOSITES

Tóth Ádám¹, Ádámné Dr. Major Andrea^{1*}

¹Innovatív Járművek és Anyagok tanszék, GAMF Műszaki és Informatikai Kar, Neumann János Egyetem,

Magyarország

https://doi.org/10.47833/2022.1.ENG.001

Kulcsszavak:

Poliamid 6 Nanokompozit DSC Avrami Izoterm kinetika

Keywords:

Polyamide 6 Nanocomposite DSC Avrami Isothermal kinetics

Cikktörténet:

Beérkezett2021. október 15.Átdolgozva2021. november 5.Elfogadva2021. december 10.

Összefoglalás

Napjainkban a poliamid alapú nanokompozitok alkalmazása gyakran kutatott terület. A szén nanocső alkalmazása számos előnnyel jár. Az erősítőanyag tartalom befolyásolja a kristályosodási folyamatot és az aktiválási energia mértékét. A kisérleteket DSC (Differential Scanning Calometry) mérőberendezéssel végeztük. Az eredmények megmutatták, a szén nanocső tartalom kismértékben képes csökkenteni az aktiválási energia nagyságát.

Abstract

Nowadays the application of the polyamide 6 based nanocomposites is a frequently investigate area. The application of carbon-nanotube has several advantages, the amount of the strengthening material affects the crystallization process and the level of the activation energy. A DSC (Differential Scanning Calometry) measuring machine has been used for our experiments. The results showed the carbon nanotube amount can slightly reduce the activation energy.

1. Bevezetés

Napjainkra a legszélesebb körben felhasznált anyag a műanyag. Az élet minden területén alkalmazzák valamilyen formában. A hétköznapi használati eszközeinktől kezdve az autóiparon át egészen az űrkutatásban is nagy szerepe van a műanyagnak, egyedi tulajdonságainak köszönhetően. A folyamatos fejlesztések révén egyre szélesebb körben használják fel. Elsősorban a járműipar alkalmazza, viszont az egészségügy területén is előszeretettel hasznosítják, de új modern épületekben is alapanyagnak számít a műanyag.

A műszaki polimerek között leggyakrabban alkalmazott műanyag a poliamid, amely kitűnő mechanikai tulajdonságai mellett a polimerekhez képest igen jó hőállósággal is rendelkezik. A jó hőállóság és jó vegyszerállóság miatt előszeretettel alkalmazzák az iparban motorburkolatok belső elemeként. A nagy vízfelvétel miatt (ami akár 3-4% is lehet) gyenge méretstabilitás jellemzi. [1]

Az erősítőanyag egyik irányának legalább nanotartományban (10⁻⁹m) kell lennie, hogy nanokompozitoról tudjunk beszélni. Napjainkban a nanorészecskéknek rengeteg típusa létezik: a fém-oxidoktól a rétegszilikátokon át, egészen a szén nanocsövekig. Az erősítő (vagy más funkciót betöltő) anyagból általában csak 1–2%-nyit alkalmazunk, mivel méretüknél fogva a nanoanyagok

^{*} Kapcsolattartó szerző. Tel.: +36 76 516 391

E-mail cím: adamne.major.andrea@gamf.uni-neumann.hu

fajlagos felülete nagyon nagy, így a határfelület is nagy lesz. Jelenleg a nanokompozitok, mint technológiai újítás a legjobban kutatott ágazat a műanyagiparban, illetve felhasználásuk is egy gyakran kutatott téma, mivel rengeteg helyen alkalmazható alacsony súlya, de kedvező mechanikai tulajdonságai miatt. [2-4] Az első poliamid alapú nanokompozitot Japánban az Ube Industries-zel karöltve a Toyota kutató intézetében fejlesztették ki, amit az új innovatív gépjárművek megalkotásakor alkalmaznak. [5]

A termoanalitikai módszerek csoportjába olyan eljárások tartoznak, amelynél a minta valamely jellemzőjének megváltozása bekövetkezik az idő és hőmérséklet függvényében. Tehát a termoanalitikai módszerek alapvetően a kémiai és fizikai folyamatok és változások tanulmányozását teszik lehetővé, melyek a hűtéssel és melegítéssel szoros kapcsolatot alkotnak.

A termoanalitikai vizsgálatok segítségével nagy pontossággal lehet meghatározni a polimerek üvegesedési és kristályolvadási hőmérsékletét. A kristályos polimerek esetében jól meghatározható a kristályosodás illetve a kristályolvadás mechanizmusa is. [6]

A kutatás elsődleges célja a rendelkezésre álló mintadarabok aktiválási energiájának meghatározása volt, illetve a szén nanocső tartalom hatásának vizsgálata a poliamid 6 alapanyagra.

2. Módszer

2.1. Alapanyag

A vizsgáltat során felhasznált alapanyag poliamid 6 (Kiamid 6 S3C PK 5 – 8 NT) és többfalú szén nanocsövet tartalmazó mesterkeverék (Nanocyl PA1503) volt. A nanokompozitok szén nanocső tartalma 0,2%, 0,4% és 0,6% volt (1. ábra). A mátrixanyag színe zöld, az erősítőanyag színe pedig fekete volt. Az előállítása egy speciális IDMX keverőberendezéssel történt.

Szén nanocső tartalom:

0%	0,2%	0,4%	0,6%
----	------	------	------

1. ábra: Poliamid 6 alapú szén nanocső nanokompozit

2.2. DSC mérési paraméterek

A vizsgálathoz a Neumann János Egyetem GAMF kar, Innovatív Járművek és Anyagok tanszéken található TA Q200 típusú DSC mérőberendezést használtunk. A berendezésből kapott adatokat a TA Universal Analysis programmal értékeltük ki. A mintákat izoterm körülmények között vizsgáltuk különböző hőmérsékleteken. Az állandó hőmérsékleten tartás 40-60 percig tartott, mivel a kristályosodási folyamat időigényes folyamat. Egy mintát 4 hőmérsékleten vizsgáltunk, melyeknek értékeit az 1. táblázat mutatja. A kristályosítási hőmérsékleteket korábbi mérések tapasztalatai alapján választottuk ki, amelyek 200-215 °C között voltak. Egy minta tömege megközelítőleg 5 mg volt.

Szén nanocső	Mérési hőmérséklet (°C)				
tartalom (%)	1. mérés	2. mérés	3. mérés	4. mérés	
0	202	204	206	208	
0,2	203	205	207	209	
0,4	204	205	206	207	
0,6	204	205	206	207	

1. táblázat: Kristályosítási hőmérsékletek

A mérés során kapott értékeket a TA Universal Analysis programmal értékeltük ki. A kapott görbék akkor kerültek elfogadásra, ha a kristályosodás lefutott, azaz a DSC görbék minden esetben visszatértek az alapvonalhoz és jól követhető volt a kristályosodási folyamat.

2.3. Mérés elve

A DSC görbén a felfelé ívelő csúcs a kristályosodást mutatja meg (2. ábra). A csúcs alatti terület a kristályosodás entalpiaváltozása. Ahogy az üvegesedési átmenetnél, itt is extrapolálással kaphatjuk meg a kristályosodás nevezetes hőmérsékleteit, azaz extrapolált kezdő- és véghőmérsékletét, illetve a csúcshőmérsékletét. [7]

2. ábra: DSC kristályosítási görbe [6]

A kristályosodási folyamatnál a T_{ic} a kezdeti hőmérséklet, T_{eic} az extrapolált kezdeti hőmérséklet, T_{pc} a kristályosítási csúcshőmérséklet, T_{efc} az extrapolált véghőmérséklet, T_{fc} a véghőmérséklet. [6]

3. Eredmények és kiértékelés

3.1. DSC görbék

Példaként a 3. ábra mutatja a 0,2% szén nanocső tartalmú minta DSC görbéjét. Négy különböző hőmérsékleten kristályosítottuk a mintát, a DSC görbék egy ábrán láthatók.

3. ábra: 0,2% szén nanocsövet tartalmazó nanokompozit minta nyers DSC görbéi

A 4.ábrán az idő függvényében mutatjuk be a hőáram alakulását (zöld görbe), mellyel jól követhető a kristályosodási folyamat, illetve a relatív kristályhányad értéke. A kristályosodás akkor játszódott le teljesen, ha a görbe visszatért az alapvonalhoz. A vizsgálati hőmérséklet növelésével a kristályosítási folyamat lejátszódási ideje is lényegesen megnőtt. Az ábrán a rózsaszín görbe segítségével nyomon követhető a kristályos hányad változása az idő függvényében.

4. ábra: 0,6% szén nanocső tartalmú minta 204°C-on történő kristályosítása során kapott görbék

3.2. Avrami kitevő

A gócképződés és a kristályosodás is idő- és hőmérsékletfüggő folyamat. A gócképződési majd később kristálynövekedési folyamatot az Avrami egyenlettel (1) lehet leírni izoterm körülmények között:

$$x = 1 - \exp(-Kt^n) \tag{1}$$

ahol: az x a kristályosodott tömeghányad a *t* időpillanatban, *K* a kristályosodás sebességi állandója, *n* az Avrami kitevő értéke, amely függ a gócképződés és növekedés folyamat jellegétől. [8]

A kristályosodási folyamat lefutása mind izoterm, mind pedig anizoterm körülmények között követhető kalorimetriás módszerrel. A TA Universal Analysis program segítségével a görbékhez tartozó adatokat kiértékeltük, segítségükkel meghatároztuk az (-ln(1-x)) értékeket. Ezeket ábrázoltuk az

ln(t-t₀) függvényében, a pontokra egyenest illesztettünk mely egyenletéből az Avrami egyenlet (2) segítségével meghatároztuk az Avrami kitevőt és az ln k értékeket.

$$\ln(-\ln(1-x)) = \ln k + n * \ln(t-t_0)$$
(2)

ahol: az x a kristályos anyaghányad, k a kristályosodás sebességi állandója, n az Avrami kitevő, t a vizsgált időpillanat, t_0 a kristályosodás kezdőidőpillanata. [8]

A 2. táblázatban láthatók az Avrami kitevők értékei a szén nanocső és a kristályosítási hőmérséklet függvényében.

Kristálvosítási	Avrami kitevő értékei				
hőmérséklet (°C)	Tiszta poliamid	0,2% szén nanocső tartalom	0,4% szén nanocső tartalom	0,6% szén nanocső tartalom	
202	2	-	-	-	
203	-	1,9	-	-	
204	2	-	1,9	1,7	
205	-	1,9	1,7	1,7	
206	2	-	1,7	1,6	
207	-	1,8	1,8	1,6	
208	1,7	-	-	-	
209	-	2,1	-	-	

2	táblázat [.]	Avrami	kitevők	értékei
<u> </u>	tubiuzut.	/ / / / / / / //	MIC VON	CILCICO

Az 5. ábrán bemutatjuk a 2. táblázatban látható Avrami kitevők változását a szén nanocső tartalom és hőmérséklet függvényében.

5. ábra: Avrami kivetők értékei a vizsgált hőmérséklet függvényében

Az Avrami kitevő értékei (n értékei) 1,6 és 2 között változnak. A kismértékű csökkenő tendencia arra utal, hogy kis mértékben változott a kristályosodás. Az Avrami kitevő csökkenését két okra lehet visszavezetni. Elsődleges oka a gócképző hatás (atermikus gócképződés), a másik ok a kristálynövekedés térirányának csökkenésére vezethető vissza. Valószínűsíthető, hogy az izoterm kristályosítás folyamán a mintákban lamellás krisztallitok alakultak ki. Ennek a pontosításához a későbbiekben a kutatómunkánk folytatásakor tervezzük nem-izoterm körülmények között is vizsgálatok elvégzését.

3.3. Aktiválási energia

Az átalakított Avrami egyenlet (2) és az Arrhenius egyenlet (3) segítségével lehet meghatározni a kristályos szerkezet kialakulásához szükséges energiamennyiséget, az aktiválási energiát. Az Arrhenius egyenlet (3) segítségével meghatározható az aktiválási energia, ha ismert a kristályosodás sebesség állandója:

$$k = A * e^{\frac{-E_a}{R*T}} \tag{3}$$

ahol *k*: a kristályosodás sebességállandója, *A*: a preexponenciális tényező, E_a : az aktiválási energia, *R*: az egyetemes gázállandó, melynek értéke 8,314 J/(K*mol), és *T*: a hőmérséklet Kelvinben kifejezve. [9]

A kristályosodás sebességállandóját (*k*) logaritmikus alakban alkalmaztuk (*lnk*) és az értékeket *3. táblázat* összefoglaltuk.

	Ink értékei			
Vizsgálati hőmérséklet (1/K)	Tiszta poliamid	0,2% szén nanocső tartalom	0,4% szén nanocső tartalom	0,6% szén nanocső tartalom
0,002105	-2,0	-	-	-
0,002100	-	-2,3	-	-
0,002096	-3,1	-	-2,4	-2,4
0,002091	-	-3,6	-3,1	-2,9
0,002087	-4,3	-	-3,6	-3,4
0,002083	-	-4,6	-3,8	-3,8

3. táblázat:	Különböző	szén nanocso	ő tartalmú	minták In	k értékei
--------------	-----------	--------------	------------	-----------	-----------

A 6. ábra mutatja az Ink értékeket.

6. ábra: Az Ink értékek változása a 1/K függvényében

A kristályosodási sebesség állandójának hőmérséklet-függése jó közelítéssel Arrhenius típusú (6. ábra). A szén nanocső tartalom függvényében vizsgáltuk a kapott értékeket és egyértelmű linearitást tapasztaltunk, így egy egyenest illesztettünk a pontokra. Az egyenesek meredekségei és az Arrhenius egyenlet alapján határoztuk meg a bruttó aktiválási energiák mértékét.

4. táblázat: A szén nanocső tartalom függvényében a bruttó aktiválási energiák értékei

Szén nanocső tartalom (%)	Aktiválási energiák (kJ/mol)
0	1082
0,2	1050
0,4	854
0,6	920

A 7. ábra szemlélteti az aktiválási energia értékeit a szén nanocső tartalom függvényében.

7. ábra: Aktiválási energia változása a szén nanocső tartalom függvényében

Az aktiválási energia bruttó mértéke csökkenő tendenciát mutat a szén nanocső tartalom növekedésével. Tehát a kristályosodás mechanizmusát ismerve (gócképződés majd az ezt követő gócnövekedés), az aktiválási energia csökkenése könnyebb gócképződésre utal. Tehát a szén nanocső gócképző hatású.

4. Összegzés

A mérési eredményekből az állapítható meg, hogy az izoterm kristályosítás során a nanokompozitban az Avrami kitevő alapján lamellás krisztallitok alakultak ki. Viszont a szén nanocső tartalom növekedésével fordított arányban változik az Avrami kitevő értéke.

Megállapítható, hogy poliamid nanokompozit kristályosodás aktiválási energiája csökkenő a szén nanocső tartalom függvényében. A legalacsonyabb bruttó aktiválási energia érték 0,4% szén nanocső tartalomnál tapasztalható, amely több mint 20%-kal kisebb, mint a tiszta poliamid esetében.

Köszönetnyilvánítás

Köszönettel tartozunk a kutatás támogatásáért, amely az EFOP-3.6.1-16-2016-00006 "A kutatási potenciál fejlesztése és bővítése a Neumann János Egyetemen" pályázat keretében valósult meg. A projekt a Magyar Állam és az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával, a Széchenyi 2020 program keretében valósul meg.

Irodalomjegyzék

- [1] Keresztes, R. Z.: "Műszaki műanyag/acél csúszópárok tribológiai kutatása polimer/acél fogfelületek súrlódása" Szent István Egyetem, Gödöllő, 2009.
- [2] A, Adamne Major: "Interesting behavior of polymers containing multiwall carbon nanotubes" IOP Conference Series: Mmaterials Science and Engeneering 1 : 1 Paper: 012027, 2017. DOI: 10.1088/1757-899X/175/1/012027
- [3] A, Adamne Major; K, Belina: "Investigation of the structure of multiwall carbon nanotubes in polymer matrix" I IOP Conference Series: Mmaterials Science and Engeneering 47 : 1 Paper: 012031, 2013. DOI: 10.1088/1757-899X/47/1/012031
- [4] A. Major, Ádámné ; K, Belina: "Crystallization and melting properties of polypropylenes containing multiwall carbon nanotube" AIP Conference Proceedings, 2011. pp. 773-778.
 DOI: 10.1063/1.3589609
- [5] Dr. Hargitai H.: "Nanotechnológiai Anyagok és Eljárások Járműipari alkalmazása" Széchenyi István Egyetem Anyagtudományi és Technológiai Tanszék, Győr, 2013.
- [6] G. W. Ehrenstein, G. Riedel, P. Trawiel: "Thermal Analysis of Plastics", Hanser Publishers 2004. DOI: 10.3139/9783446434141
- [7] Magyar Szabvány: "Műanyagok. Pásztázó differenciálkalorimetria (DSC)" MSZ EN ISO 11357-1:1999.
- [8] P. C. Vilanova, S. M. Ribas G. M. Guzmat: "Isothermal crystallization of poly(ethylene-terephthalate) of low molecular weight by differential scanning calorimetry: 1. Crystallization kinetics", Polymer, 1984, pp. 423-428. DOI: 10.1016/0032-3861(85)90205-8
- [9] D.W. Ball, Jessie A. Key: "Introductory Chemistry 1st Canadian Edition" Chapter 17. Kinetics, B.C Open Textbook Project, 2015, pp. 871.-916.