

A STUDY OF THE NEIGHBORHOOD COMPLEX OF < s, t >-STABLE KNESER GRAPHS

József Osztényi*

Department of Basic Sciences, Faculty of Mechanical Engineering and Automation, John von Neumann University, Izsáki út 10, Kecskemét, 6000, Hungary https://doi.org/10.47833/2021.3.CSC.006

Keywords:

stable Kneser graph, chromatic number, neighborhood complex

Article history:

Received8 Oct 2021Revised27 Nov 2021Accepted2 Dec 2021

Abstract

In 1978, Alexander Schrijver defined the stable Kneser graphs as a vertex critical subgraphs of the Kneser graphs. In the early 2000s, Günter M. Ziegler generalized Schrijver's construction and defined the *s*-stable Kneser graphs. Thereafter Frédéric Meunier determined the chromatic number of the *s*-stable Kneser graphs for special cases and formulated a conjecture on the chromatic number of the *s*-stable Kneser graphs. In this paper we study a generalization of the *s*-stable Kneser graphs. For some specific values of the parameter we show that the neighborhood complex of < s, t >-stable Kneser graph has the same homotopy type as the (t - 1)-sphere. In particular, this implies that the chromatic number of this graph is t + 1.

1 Introduction

In this section, first we setup some notations and terminologies. Hereafter, the symbol [m] stands for the set $\{1, \ldots, m\}$. For positive integers $m \ge n$, let $2^{[m]}$ denote the collection of all subsets of [m] and let $\binom{[m]}{n}$ denote the collection of all *n*-subsets of [m].

For an integer $s \ge 2$ a subset $A \subseteq [m]$ is *s*-stable if any two of its elements are at least "at distance *s* apart" on the *m*-cycle, that is, if $s \le |i - j| \le m - s$ for distinct $i, j \in A$. A subset $A \subseteq [m]$ is almost *s*-stable, if $s \le |i - j|$ for distinct $i, j \in S$. In this note we examine a further generalization of *s*-stable set. For positive integers $t \le s$ a subset $A \subseteq [m]$ is < s, t >-stable, if

$$s \le |i - j| \le m - t$$

for distinct $i, j \in S$. The $\langle s, 1 \rangle$ -stable is the same as almost *s*-stable. There is a further generalization of stability as follows. For a *n*-set $A \subseteq [m]$, let $A(1), A(2), \ldots, A(n)$ be the ordered elements of A, that is A(1) is the smallest element and A(n) is the largest element of A in the standard order. If $\vec{s} = (s_1, \ldots, s_n)$ is an integer vector, then a *n*-subset $A \subseteq [m]$ is called \vec{s} -stable, if $s_j \leq A(j+1) - A(j)$ for $1 \leq j \leq n-1$ and $A(n) - A(1) \leq m - s_n$. Note that the cases $\vec{s} = (s, \ldots, s), \vec{s} = (s, \ldots, s, t)$ and $\vec{s} = (s, \ldots, s, t)$ demonstrate the usual concept of *s*-stable, almost *s*-stable and $\langle s, t \rangle$ -stable subsets, respectively.

Hereafter, the symbols $\binom{[m]}{n}_{s}$, $\binom{[m]}{n}_{s\sim}$, $\binom{[m]}{n}_{<\!\!s,t\!\!>}$, $\binom{[m]}{n}_{\vec{s}}$ stand for the collection of all *s*-stable, almost *s*-stable, $<\!\!s,t\!\!>$ -stable and \vec{s} -stable *n*-subsets of [m], respectively.

Let $\mathcal{F} \subseteq 2^{[m]}$ be a set system. The *Kneser graph of* \mathcal{F} has \mathcal{F} as the vertex set, and two sets $A, B \in \mathcal{F}$ are adjacent iff $A \cap B = \emptyset$. In the next section we will use the set systems $\binom{[m]}{n}_s$, $\binom{[m]}{n}_{s\sim}$, $\binom{[m]}{n}_{<s,t>}$, and $\binom{[m]}{n}_{\vec{s}}$ as the ground set of a Kneser graph.

^{*}E-mail address: osztenyi.jozsef@gamf.uni-neumann.hu

2 History and Motivation

2.1 On the chromatic number of the Kneser graphs

In 1978, László Lovász [11] proved the famous Kneser Conjecture, which state that the chromatic number of the Kneser graph $KG_{m,n}$ is equal to m - 2n + 2, where $KG_{m,n}$ denote the Kneser graph of $\binom{[m]}{n}$.

Theorem 1 (Lovász[11](1978)). Let m, n be positive integers such that $m \ge 2n$. Then

$$\chi(KG_{m,n}) = m - 2(n-1).$$
(1)

Shortly afterwards Alexander Schrijver [17] constructed a vertex critical subgraph $SG_{m,n}$ of $KG_{m,n}$. The stable Kneser graph $SG_{m,n}$ was obtained by restricting the vertex set to the *n*-subsets that are 2 - stable, that is the Kneser graph of $\binom{[m]}{n}_2$.

Theorem 2 (Schrijver[17](1978)). Let m, n be positive integers such that $m \ge 2n$. Then

$$\chi(SG_{m,n}) = m - 2(n-1).$$
(2)

Günter M. Ziegler generalized Schrijver's construction in [18] and gave an upper bound for the chromatic number of *s*-stable Kneser graph. The *s*-stable Kneser graph, denoted as $SG_{m,n}^s$, is the Kneser graph of $\binom{[m]}{n}_s$ for positive integers $n, s \ge 2$ and $m \ge sn$.

Proposition 3 (Ziegler[18](2002)). Let m, n be positive integers such that $m \ge 2n$. Then

$$\chi(SG^s_{m,n}) \le m - s(n-1). \tag{3}$$

The almost *s*-stable Kneser graph, denoted as $SG_{m,n}^{s\sim}$, was defined by Frédéric Meunier in [12]. $SG_{m,n}^{s\sim}$ is the Kneser graph of $\binom{[m]}{n}_{s\sim}$ for positive integers $n, s \geq 2$ and $m \geq s(n-1) + 2$. Meunier proved the following result about the chromatic number of almost 2-stable Kneser graph $SG_{m,n}^{2\sim}$.

Proposition 4 (Meunier[12](2011)). Let m, n be positive integers such that $m \ge 2n$. Then

$$\chi(SG_{m,n}^{2\sim}) = m - 2(n-1).$$
(4)

Furthermore, Meunier formulated the following conjecture about the chromatic number of *s*-stable Kneser graph $SG_{m,n}^s$.

Conjecture 5 (Meunier[12](2011)). Let m, n, s be positive integers such that $m \ge sn$ and $s \ge 2$. Then

$$\chi(SG_{m,n}^{s}) = m - s(n-1).$$
(5)

As noted above the conjecture is known to be true for s = 2 by the result of Schrijver [17]. In the case m = sn the conjecture is trivially true, because $SG_{sn,n}^s$ is a complete graph. In addition Meunier [12] settled the case m = sn + 1. Further Jakob Jonsson [8] confirmed it for $s \ge 4$, provided m is sufficiently large in terms of s and n. Then in 2015, Peng-An Chen [4] proved the conjecture for even s.

Theorem 6 (Chen[4](2015)). Let m, n, s be positive integers such that $m \ge sn$ and $s \ge 2$. If s is even, then

$$\chi(SG_{m,n}^{s}) = m - s(n-1).$$
(6)

Afterwards Chen proved the following result about the chromatic number of almost *s*-stable Kneser graph $SG_{m,n}^{s\sim}$.

Theorem 7 (Chen[5]). Let m, n, s be positive integers such that $m \ge sn$ and $s \ge 2$. Then

$$\chi(SG_{m,n}^{s\sim}) = m - s(n-1).$$
(7)

Recently, in a joint work with Hamid Reza Daneshpajouh we proved the following theorem on the chromatic number of \vec{s} -stable Kneser graphs.

Theorem 8 (Daneshpajouh, Osztényi[6](2021)). Let m, n be positive integers and $\vec{s} = (s_1, \ldots, s_n)$ be an integer vector where $n \ge 2$, $m \ge \sum_{i=1}^{n-1} s_i + 2$, $s_i \ge 2$ for $i \ne n$ and $s_n \in \{1, 2\}$. Then

$$\chi\left(SG_{m,n}^{\vec{s}}\right) = m - \sum_{i=1}^{n-1} s_i.$$
(8)

In this note, in conjunction with Lovász's topological bound on the chromatic number, we can determine the chromatic number of $\langle s, t \rangle$ -stable Kneser graphs for some special parameters.

2.2 On the neighborhood complex of the Kneser graphs

In the proof of the Kneser conjecture Lovász introduced a simplicial complex related to a graph G, the neighborhood complex $\mathcal{N}(G)$ and applied the Borsuk–Ulam theorem to show that the connectivity of this complex give a lower bound for the chromatic number of the graph G.

Theorem 9 (Lovász[11](1978)). If $\mathcal{N}(G)$ is (k-2)-connected, then

$$\chi(G) > k. \tag{9}$$

Furthermore, he showed that the neighborhood complex of the Kneser graph $KG_{m,n}$ is (m-2n-1)-connected, which implies $\chi(KG_{m,n}) > m-2n+1$. Schrijver used another, Bárány's method [1] to obtain the chromatic number of the stable Kneser graphs. Later, just in 2002 Anders Björner and Mark de Longueville [3] studied the neighborhood complex of $SG_{m,n}$, and showed that it has the homotopy type of the (m-2n)-sphere.

Theorem 10 (Björner, de Longueville[3](2002)). For all positive integers m, n the complex $\mathcal{N}(KG_{m,n})$ is homotopy equivalent to the (m - 2n)-sphere.

Meunier, and the other authors of the papers devoted to the study of the chromatic number of the *s*-stable Kneser graphs [4, 5, 8], used combinatorial (Tucker–Ky Fan's lemma and \mathbb{Z}_p -Tucker lemma), or algebraic tools.

Recently, a result about the homotopy type of the neighborhood complex of almost *s*-stable Kneser graphs has been announced by the author of this note in [16].

Theorem 11 (Osztényi[16](2019)). For all positive integers m, n, s such that $2 \le s$ and $s(n-1)+2 \le m$ the complex $\mathcal{N}(SG_{m,n}^{s\sim})$ is homotopy equivalent to the (m - s(n-1) - 2)-sphere.

Combining this result with Lovász's topological lower bound on the chromatic number of graphs yielded a new proof about the chromatic number of almost *s*-stable Kneser graphs $SG_{m,n}^{s\sim}$, which was determined earlier by Chen [5] in another method.

Also recently, Nandini Nilakanta and Anurag Singh [14, 15] constructed a maximal subgraph $S_{4+k,2}$ of $KG_{4+k,2}$ and $S_{6+k,3}$ of $KG_{6+k,3}$, whose neighborhood complex is homotopy equivalent to the neighborhood complex of $SG_{4+k,2}$ and $SG_{6+k,3}$, respectively. Further, they proved that the neighborhood complex of $S_{2n+k,n}$ deformation retracts onto the neighborhood complex of $SG_{2n+k,n}$ for n = 2, 3.

In the joint work with Hamid Reza Daneshpajouh we proved the following theorem on the neighborhood complex of \vec{s} -stable Kneser graphs.

Theorem 12 (Daneshpajouh, Osztényi[6](2021)). Let m, n be positive integers and $\vec{s} = (s_1, \ldots, s_n)$ be an integer vector where $n \ge 2$, $m \ge \sum_{i=1}^{n-1} s_i + 2$, $s_i \ge 2$ for $i \ne n$ and $s_n \in \{1, 2\}$. Then, the neighborhood complex of $SG_{m,n}^{\vec{s}}$ is homotopy equivalent to the $\left(m - \sum_{i=1}^{n-1} s_i - 2\right)$ -sphere.

The main purpose of this note is to present the homotopy type of the neighborhood complex of $\langle s, t \rangle$ -stable Kneser graphs for some special parameters.

3 Preliminaries

We now recall some basic definitions of combinatorial topology in order to fix notation, and raise some tools, which we will apply. The interested reader is referred to [2], [10] and [13] for more details.

A simplicial complex \mathcal{K} is a set $V(\mathcal{K})$ (the vertex set) together with a hereditary set system of non-empty finite subsets of $V(\mathcal{K})$ (called *simplices*). We denote by Δ_n the simplicial complex of a *n*-dimensional simplex, that is $\Delta_n = 2^{[n+1]}$, and by $\dot{\Delta}_n$ its boundary complex. In this paper, whenever we make topological statements about a simplicial complex \mathcal{K} we have the geometric realization $|\mathcal{K}|$ in mind.

A topological space X is *k*-connected if every map from the sphere $\mathbb{S}^n \to X$ extends to a map from the ball $\mathbb{B}^{n+1} \to X$ for $n = 0, 1, \dots, k$. A space X is -1-connected if it is non-empty.

Two continuous maps $f, g : X \to Y$ are *homotopic* (written $f \sim g$) if there is a continuous map $F : X \times [0,1] \to Y$ such that, F(x,0) = f(x) and F(x,1) = g(x) for all $x \in X$. Two spaces X and Y are *homotopy equivalent* (or have the same homotopy type) if there are continuous maps $f : X \to Y$ and $g : Y \to X$ such that the composition $f \circ g : Y \to Y$ is homotopic to the identity map id_Y and $g \circ f \sim id_X$. A space that is homotopy equivalent to a single point is called *contractible*.

For topological spaces X, Y, the *join* X * Y is the quotient space $X \times Y \times [0,1]/\approx$, where the equivalence relation \approx is given by $(x, y, 0) \approx (x', y, 0)$ for all $x, x' \in X$ and $y \in Y$ and $(x, y, 1) \approx (x, y', 1)$ for all $x \in X$ and $y, y' \in Y$. The *suspension of* X is the join with a two-point space: $susp(X) := X * \mathbb{S}^0$.

For a graph *G*, let $2^{V(G)}$ denote the set of all subsets of the vertex set of *G*. We denote by $cn: 2^{V(G)} \rightarrow 2^{V(G)}$ the common neighborhood map, introduced by Lovász [11]

$$cn(A) := \{ v \in V(G) : (v, a) \in E(G) \text{ for all } a \in A \}.$$

The *neighborhood complex* $\mathcal{N}(G)$ is the simplicial complex whose vertices are the vertices of *G* and whose simplices are those subsets of V(G) which have a common neighbor:

$$\mathcal{N}(G) = \{ A \subseteq V(G) : \exists v \in V(G) \text{ that } A \subseteq cn(v) \}.$$
(10)

We will apply the idea of Björner and de Longueville [3] to deduce the homotopy equivalence of the complex $\mathcal{N}(SG_{m,n}^{<s, \triangleright})$ and \mathbb{S}^{t-1} , that is we use the following consequence of the Gluing Lemma.

Proposition 13 ([3]). Let \mathcal{K} be a simplicial complex and \mathcal{C}, \mathcal{D} contractible subcomplexes such that $\mathcal{K} = \mathcal{C} \cup \mathcal{D}$. Then \mathcal{K} is homotopy equivalent to the suspension $susp(\mathcal{C} \cap \mathcal{D})$.

4 On the neighborhood complex of the $\langle s, t \rangle$ -stable Kneser graphs

We have mentioned that the *s*-stable Kneser graph $SG_{sn,n}^s$ is a complete graph, and so the complex $\mathcal{N}(SG_{sn,n}^s)$ is the boundary of the *s*-simplex, $\dot{\Delta_s}$. Similarly the $\langle s, t \rangle$ -stable Kneser graph $SG_{s(n-1)+t,n}^{\langle s,t \rangle}$ is a complete graph with vertices $A_i = \{i, s+i, 2s+i, \dots, (n-1)s+i\}$ for $i = 1, \dots, t$. So the complex $\mathcal{N}(SG_{s(n-1)+t,n}^{\langle s,t \rangle})$ is the boundary of the *t*-simplex.

Next we study the neighborhood complex $\mathcal{N}(SG_{s(n-1)+t+1,n}^{<s,t>})$.

Proposition 14. For all positive integers n, s, t such that t < s and $2 \leq n$ the complex $\mathcal{N}(SG_{s(n-1)+t+1,n}^{<s,t>})$ is homotopy equivalent to the (t-1)-sphere.

Proof. The proof is by induction on t. The base case is known to be true for t = 1 by the result of [16].

Now, assume that t > 1. Let \mathcal{N}_1 and \mathcal{N}_2 be the subcomplexes of $\mathcal{N}(SG_{s(n-1)+t+1,n}^{<\!\!s,t\!\!>})$ defined by

$$\mathcal{N}_1 := \{ F \subseteq cn(A) : A \in V(SG_{s(n-1)+t+1,n}^{\langle s,t \rangle}) \text{ such that } 1 \in A \},$$
(11)

$$\mathcal{N}_2 := \{ F \subseteq cn(B) : B \in V(SG_{s(n-1)+t+1,n}^{< s,t>}) \text{ such that } 1 \notin B \},$$
(12)

Clearly $\mathcal{N}(SG_{s(n-1)+t+1,n}^{\langle s,t \rangle}) = \mathcal{N}_1 \cup \mathcal{N}_2$. Now, Theorem 13 ensures, that it suffices to show that \mathcal{N}_1 and \mathcal{N}_2 are contractible and $\mathcal{N}_1 \cap \mathcal{N}_2$ is homotopy equivalent to the (t-2)-sphere.

First we deduce that N_1 and N_2 are contractible. For this we define the following $\langle s, t \rangle$ -stable *n*-subsets of [s(n-1) + t + 1]

$$A_{i,0} := \{i, s+i, 2s+i, \dots, (n-1)s+i\}$$
(13)

for $1 \le i \le t+1$, and

 $A_{i,j} := \{i, s+i, 2s+i, \dots, (n-j-1)s+i, (n-j)s+i+1, (n-j+1)s+i+1, \dots, (n-1)s+i+1\}$ (14)

for $1 \leq j \leq n-1$ and $1 \leq i \leq t$.

Figure 1. The Kneser graph $SG_{9,3}^{\langle 3,2\rangle}$.

It is easy to see that

Furthermore

 $\mathcal{N}_1 = \{ F \subseteq cn(A_{1,j}) : \text{ for } 0 \le j \le n-1 \},$ (16)

$$\mathcal{N}_2 = \{F \subseteq cn(A_{i,0}): \text{ for } 2 \le i \le t+1\} \cup \{F \subseteq cn(A_{i,j}): \text{ for } 1 \le j \le n-1, \ 2 \le i \le t\}$$
(17)

The subset $A_{1,0}$ is disjoint from all $A_{i,0}$ for $2 \le i \le t+1$ and from $A_{i,j}$ for $1 \le j \le n-1$, $2 \le i \le t$, thus

$$\mathcal{N}_1 = \{F \subseteq cn(A_{1,0})\}\tag{18}$$

is a simplex. In addition to this $A_{1,0} \in cn(A_{i,0})$ for $2 \le i \le t+1$ and $A_{1,0} \in cn(A_{i,j})$ for $1 \le j \le n-1$, $2 \le i \le t$, that is \mathcal{N}_2 is a cone. Thus we have shown that $\mathcal{N}_1, \mathcal{N}_2$ is contractible

To deduce that the complex $\mathcal{N}_1 \cap \mathcal{N}_2$ is homotopy equivalent to the (t-2)-sphere we will prove that $\mathcal{N}_1 \cap \mathcal{N}_2$ is isomorphic to $\mathcal{N}(SG_{s(n-1)+t,n}^{< s,t-1>})$. Notice that

$$V(SG_{s(n-1)+t,n}^{}) = \{A_{i,0}: \text{ for } 1 \le i \le t\} \cup \{A_{i,j}: \text{ for } 1 \le j \le n-1, \ 1 \le i \le t-1\}.$$
(19)

$$\phi(A_{i,j}) = A_{i+1,j}$$
, for all possible values of the pair i, j , (20)

Figure 2. The neighborhood complex of the Kneser graph $SG_{9,3}$.

induces a simplicial mapping

For this simplicial mapping we have

$$\Phi(cn(A_{i,j})) = cn(A_{1,0})) \cap cn(\phi(A_{i,j})),$$
(22)

so

$$\Phi: \mathcal{N}(SG_{s(n-1)+t,n}^{\langle s,t-1\rangle}) \to \mathcal{N}_1 \cap \mathcal{N}_2$$
(23)

is an isomorphism.

So we completed the proof

				n = 3					
$\langle s,t \rangle$	m	H_0	H_1	H_2	H_3	H_4	H_5	H_6	H_7
<4,2>	10	\mathbb{Z}							
	11		\mathbb{Z}						
	12			\mathbb{Z}					
<4,3>	11		\mathbb{Z}						
	12			\mathbb{Z}					
	13				\mathbb{Z}^3				
<4,4>	12			\mathbb{Z}					
	13				\mathbb{Z}				
	14				\mathbb{Z}	\mathbb{Z}^2			

Table 1. The reduced integer homology groups of $\mathcal{N}(SG_{m,3}^{<\!\!\!\!\!\!4,t\!\!\!\!>})$ in some cases.

Remark. With the help of the software polymake, we have computed the reduced integer homology groups of $\mathcal{N}(SG_{m,n}^{\langle s,t \rangle})$ in some cases (see Table 1. and Table 2.). For the Kneser graphs $SG_{m,2}^{\langle s,t \rangle}$ and $SG_{m,3}^{\langle 4,2 \rangle}$, we obtained the results already known in [3]. For the cases 2 < t < s these results showed that the connectivity of $\mathcal{N}(SG_{m,n}^{\langle s,t \rangle})$ is larger than m-s(n-1)-t-1, but these complexes are

not homotopy equivalent to a sphere in general. In additionally, we studied the case t = s also, and we obtained the results already known in [16]. That is the neighborhood complexes of these graphs are not homotopy equivalent to a sphere, in addition the connectivity of the neighborhood complexes of these graphs does not give the expected lower bound for the chromatic number of these graphs.

				n=2					
$\langle s,t \rangle$	m	H_0	H_1	H_2	H_3	H_4	H_5	H_6	H_7
<5,2>	7	\mathbb{Z}							
	8		\mathbb{Z}						
	9			\mathbb{Z}					
	10				\mathbb{Z}				
<5,3>	8		\mathbb{Z}						
	9			\mathbb{Z}					
	10				\mathbb{Z}				
	11					\mathbb{Z}	\mathbb{Z}^2		
<5,4>	9			\mathbb{Z}					
	10				\mathbb{Z}				
	11					\mathbb{Z}			
	12						\mathbb{Z}^2	\mathbb{Z}	
<5,5>	10			\mathbb{Z}					
	11				\mathbb{Z}				
	12					\mathbb{Z}^6	\mathbb{Z}		
	13						\mathbb{Z}_2		\mathbb{Z}

Table 2. The reduced integer homology groups of $\mathcal{N}(SG_{m,2}^{<5,\diamondsuit})$ in some cases.

5 On the chromatic number of the $\langle s, t \rangle$ -stable Kneser graphs

The *s*-stable Kneser graph $SG_{sn,n}^s$ is a complete graph, thus we can colour it with *s* color. Meunier proved in [12] that the chromatic number of $SG_{sn+1,n}^s$ is equal with s + 1. Now we give the generalization of this result for $\langle s, t \rangle$ -stable Kneser graph in $t \langle s \rangle$ cases.

Theorem 15. Let n, s, t be positive integers such that $s \ge 2$ and t < s. Then

Proof. The topological connectivity of the sphere \mathbb{S}^{t-1} is t-2, consequently Lovász's topological lower bound gives the following lower bound for the chromatic number:

$$\chi(SG_{s(n-1)+t+1,n}^{s,t}) > conn(\mathcal{N}(SG_{s(n-1)+t+1,n}^{s,t>})) + 2 = t.$$
(25)

Furthermore, it is easy to see that the usual coloring uses at most t + 1 colors, and is proper: for a vertex A of $SG_{s(n-1)+t+1,n}^{<s,t>}$, we define its colors by

$$c(A) := \min A. \tag{26}$$

References

- [1] I. Bárány, A short proof of Kneser's conjecture, J. Combinatorial Theory, Ser. A, 25 (1978), 325-326 pp., DOI:10.1016/0097-3165(78)90023-7
- [2] A. Björner, *Topological methods*, In R. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics Vol. II, Chapter 34, 1819-1872 pp, North-Holland, Amsterdam, 1995.
- [3] A. Björner and M. de Longueville, *Neighborhood complexes of stable Kneser graphs*, Combinatorica **23** (2003), 23-34 pp., DOI:10.1007/s00493-003-0012-5
- P. Chen, On the multichromatic number of s-stable Kneser graphs, J. Graph Theory 79 (2015), 233-248 pp., DOI:10.1002/jgt.21826
- [5] P. Chen, On the chromatic number of almost *s*-stable Kneser graphs, arXiv preprint arXiv:1711.06621, (2017).
- [6] H.R. Daneshpajouh and J. Osztényi, *On the neighborhood complex of s*-stable Kneser graphs, Discrete Math. **344**, no 4, (2021), 287-291 pp., DOI:10.1016/j.disc.2021.112302
- [7] P. Erdős, Problems and results in combinatorial analysis, Colloquio Internazionale sulle Teorie Combinatorie (Rome 1973), Vol. II, No. 17 in Atti dei Convegni Lincei, (1976), 3-17 pp.
- [8] J. Jonsson, On the chromatic number of generalized stable Kneser graphs, submitted, 2012.
- [9] M. Kneser, Aufgabe 300, Jber. Deutsch. Math. Verein., 58, (1955).
- [10] D. N. Kozlov, *Combinatorial algebraic topology*, Algorithms and Computation in Mathematics, 21. Springer, Berlin, 2007., DOI:10.1007/978-3-540-71962-5
- [11] L. Lovász, *Kneser's conjecture, chromatic number and homotopy*, J. Combinatorial Theory, Ser. A, 25 (1978), no. 3, 319-324 pp.
- [12] F. Meunier, The chromatic number of almost stable Kneser hypergraphs, J. Combinatorial Theory, Ser. A, 118 (2011), 1820-1828. DOI:10.1016/j.jcta.2011.02.010
- [13] J. Matoušek, Using the Borsuk–Ulam Theorem; Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag, Berlin, Corr. 2nd printing, 2008., DOI:10.5860/choice.41-5956
- [14] N. Nilakantan and A. Singh, *Homotopy type of neighborhood complexes of Kneser graphs*, *KG*_{2,k}, Proceedings - Mathematical Sciences, **128:53** (2018)., DOI:10.1007/s12044-018-0429-9
- [15] N. Nilakantan and A. Singh, Neighborhood complexes of Kneser graphs, KG_{3,k}, arXiv preprint arXiv:1807.11732 (2018).
- [16] J. Osztényi, The neighborhood complexes of almost s-stable Kneser graphs, European Journal of Combinatorics, 76 (2019), 82-87 pp., DOI:10.1016/j.ejc.2018.09.002
- [17] A. Schrijver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch. Wiskd. (3), 26 (1978).
- [18] G. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs, Invent. Math., 147 (2002), 671-691 pp., DOI:10.1007/s002220100188