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 Abstract 
Exponential Fourier split-step methods (EFSSM) are widely 
employed nowadays in the numerical treatment of the 
generalized nonlinear Schrödinger equation, e.g. in the modeling 
of ultrashort light pulse propagation in nonlinear media. The 
derivation of such methods is straightforward for a normalized 
electric field wavefunction using normalized coordinates, i.e. 
spatial units that depend on diffraction length and pulse length 
and temporal units that depend on pulse duration, and they may 
depend on several more characteristic measures, such as 
nonlinear length, dispersion length, peak electric field strength as 
well. However when testing simulation programs and comparing 
outputs with experimental data it is easier to use absolute 
coordinates and absolute electric fields. This paper derives the 
formulae of the EFSSM in recent paper [1] using absolute 
coordinates for absolute electric fields. 

1 Introduction 

The generalized nonlinear Schrödinger equation is the model of several natural phenomena, 
such as plasma soliton [2] and water wave propagation [3,4], and the topic of the current paper: the 
propagation of ultra-intense laser pulses in nonlinear media [5,6], and its special case, the generation 
of white light continuum from ultra-intense laser pulses. 

The white light continuum, which is an effect of spectral broadening of ultra-intense laser 
pulses, is illustrated on Fig. 1. 

(a)   (b) 

Figure 1. The input high intensity laser pulse represented at the bottom of graph (a) [7] has a 
narrow wavelength range, but as it propagates in a medium, it gets broader and broader, and this 
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broadness in the end can be seen even with the naked eye as the white color of the output light on 
picture (b) [7]. The white light is also resolved into the colors of the rainbow. 

There are several advanced applications of the white light continuum, including optical 
coherence tomography [8,9], frequency metrology [10,11,12] and fluorescence lifetime imaging [13]. 
Of course, the extreme broad bandwidth of the white light continuum enables it to be very fast light 
source of optical communication [14,15,16], and it has advantages as the light source of 
photoacoustic gas sensing applications [17,18,19]. 

Modelling of white light continuum generation is therefore of great scientific and technical 
importance. 

2 Exponential Fourier split-step method (EFSSM) for the solution of the 
generalized nonlinear Schrödinger equation 

The form of the generalized nonlinear Schrödinger equation used in nonlinear optics for the 
cases without ionization is [1] 

  (1) 

where u = u(,,,) is the normalized space and time dependent evolving wavefunction of the 
light pulse to be determined, u0 is the normalized wavefunction of the input pulse. The coefficients 

are related to the linear and nonlinear optical properties of the pulse and the medium (0: central 

angular frequency, p: pulse e–1 length, Ldf: diffraction length, Lds: dispersion length, Lnl: nonlinear 

length). On the left hand side there is the derivative of u by , which is the normalized coordinate in 
the direction of propagation. The Laplace operators are computed in the directions perpendicular to 

the propagation, with normalized  and  variables. The temporal variable , is normalized too. 
The numerical solution of this equation is possible using an exponential Fourier split-step 

method (EFSSM) [1]. The method takes steps in the  direction in order to compute u(+) from 

u(). The step is split because of the handling of the terms of the right hand side of the equation 
separately, for example: 

𝑢(𝜁 + Δ𝜁) ≈ 𝐸𝐶 [Δ𝜁, 𝜁, 𝐸𝐵[Δ𝜁, 𝜁, 𝐸𝐴[Δ𝜁, 𝜁, 𝑢(𝜁)]]] 

where EA, EB and EC are the solution operators of the differential equations having the following 
A, B, and C operators (so called split step operators) on their right hand sides: 
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Here (A + B + C)u is just the right hand side of our original (1) equation. 

The ordering of the solution operators in step splitting, and the step sizes influence the 
precision of the solution. The best step size-operator ordering pattern is [1] 
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3 Motivation 

In order to easily compare the EFSSM solution to experimental data or simulation results from 
another numerical methods, electric field strength as the function of absolute spatial and temporal 
coordinates ℰ(𝑥, 𝑦, 𝑧, 𝑡) should be obtained. In [1] we are given the split-step operators and the full 
EFSSM method for a normalized wavefunction u in normalized coordinates, and the situation is 
further complicated by the presence of the diffraction length, dispersion length, nonlinear length 
measures, that depend on both medium and pulse properties. Therefore it is straightforward to derive 
the corresponding operators in absolute space and time coordinates, that operators give the absolute 
electric field strength function. 

4 Derivation 

To derive the operators outlined above, first I substituted the definition of the relative 

coordinates into (1): 𝜒 =
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Now substitute the definitions of the diffraction length, dispersion length and the nonlinear 
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and n2: the nonlinear refractive index of the medium, I0: the peak intensity of the pulse), in order to 

separate the measures that characterize the pulse, and that characterize the medium. 

   

Let’s divide by k0, and use the several possibilities to simplify: 

  (2) 

At this point it is useful to compare the results with another paper [20], where the pulse 
propagation equation reads: 
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The only difference is the definition of the wavefunction, 𝐴 = √𝐼0𝑢. This definition makes it 

possible, to eliminate I0 in the last term, by absorbing it into the square term as |√𝐼0𝑢|
2

= |𝐴|2. 

A is proportional to the electric field strength amplitude ℰ we are looking for. The latter is known 

to be in the form 𝐼 =
1

2
𝜖0𝑐𝑛|ℰ|2. The peak intensity is associated with the peak electric field amplitude: 
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2. Substitute this into the (2): 

   

The electric field amplitude ℰ = ℰ0 ⋅ 𝑢 can be obtained everywhere in the equation through 

multiplying by ℰ0: 
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  (3) 

Now the A’, B’ and C’ operators of (3) can be constructed, whose sum applied on ℰ gives the 
right hand side of (3): 
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5 Results and future work 

With my colleague Balázs Antalicz at ELI-ALPS we have written a modeling program in Matlab, 
that implements the three-operator method derived above, with the step size-operator ordering 
pattern: 
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A few examples I generated using this code can be seen on Fig. 2. An ultra-intense laser pulse 
is taken into account propagating in fused silica (for quantitative properties see figure caption). The 
horizontal extent is the spatial size, the vertical is the spectrum, that broadens spectacularly as the 
pulse propagates forward. 
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Figure 2. Ultra-intense light pulse propagation in fused silica. Central wavelength: 532 nm, input 
length: 30 fs, beam width: 100 µm, pulse energy: 200 mJ (peak field strength 2·1010 V/m) 

My planned future task is to recreate the multiplate continuum-generation experiments in [20] 
as simulations with an improved code, and then to investigate the effect of different types and extents 
of spatio-temporal couplings of the pulse on the output white light continuum. 
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