

AZ EXCEL "REJTETT" ERŐFORRÁSAINAK FELHASZNÁLÁSA AZ OKTATÁSBAN

APPLICATION OF THE 'HIDDEN' RESOURCES OF EXCEL IN EDUCATION

Dr. Salamon József Imre^{*}

Ceglédi Szakképzési Centrum Közgazdasági és Informatikai Szakközépiskolája

<i>Kulcsszavak:</i> Excel, Fejlesztőeszközök, Informatika, Matematika,	Összefoglaló Az Excel program - alaphelyzetben nem bekapcsolt - fejlesztőeszközeinek segítségével olyan munkafüzetek létrehozására leszünk képesek, melyekkel bővítve oktatásunk módszertanát egyértelműen növekszik munkánk
Fizika	hatékonysága.
<i>Keywords:</i> Excel, Developer toolbar, Informatics, Mathematics, Physics	Az űrlap-vezérlőelemek használata interaktívvá teszi az automatizált ismeretátadásunkat, miközben egyéni tempót engednek meg. Az alkalmazhatóság széles spektruma is indokolja a közoktatásban való felhasználását. Ezáltal válhat az Excel program az ismeretszerzés célján túlmenően annak hasznos eszközévé. Abstract
Cikk történet: Beküldve: 2015. október 12. Átdolgozva: 2015. október 30. Elfogadva: 2015. november 1	Excel's Developer toolbar - which are default switched off – increases the ability to create workbooks for expand educational methodologies and increase the efficiency of our work. The application of Form Controls makes automatic knowledge transfer interactive, while it allows students individual pace of work. The wide spectrum of 'Form Controls' application justifies the necessity of its utilization in state education.

1 Bevezető

Az Ecxel hatékony, és egyszerűen kezelhető fejlesztő környezetet biztosít interaktív munkafüzetek létrehozásához.

A fejlesztőeszközeinek eléréséhez a Fájl_/_Beállítások párbeszédablak "Menüszalag testreszabása" lapján kell bekapcsolnunk a "Fejlesztőeszközöket". Ennek eredményeként menüszalagunk kiegészül az azonos nevű menüponttal. Ebben a menüben (ennek menüszalagján) elérhetővé válik a teljes fejlesztő környezet.

A felhasználó és a munkafüzet közötti párbeszédhez az "Űrlap-vezérlőelemek" nevet viselő eszközrendszer áll rendelkezésünkre. Közülük a hat legtöbbször használt eszköz nevét és funkcióját az 1. Táblázat tartalmazza.

^{*} Kapcsolattartó szerző. Tel./fax: +36-53-505-095 E-mail cím: salamon@ckik.hu

A vezérlőelem neve	A vezérlő funkciója
Jelölőnégyzet	A csatolt cella tartalmát kapcsolja IGAZ, vagy HAMIS értékűre.
Választógomb	A csatolt cella tartalma a választógombnak a csoportban elfoglalt sorszáma.
Léptetőnyíl	A csatolt cella tartalmát lépteti az adott intervallumon belül egy adott értékklel.
Gördítősáv	A léptetőnyíl funkció az eszköz grafikus bővítésével (sávval és csúszkával).
Beviteli lista	A csatolt cellában a bemeneti tartományból kiválasztott elem sorszáma kerül.
Gomb	Visual Basic makró indítása

1. Táblázat. Űrlap-vezérlőelemek és feladatuk

A fenti eszközrendszer felhasználásával, egyéb didaktikai megfontolásokra építve készültek az alábbi fejlesztések, melyeket tantárgyankénti csoportosításban mutatok be.

2 Informatikai ismeretek támogatása

Az informatikai ismeretek átadása az egyik legösszetetteb kihívást állítja a tárgyat oktató pedagógusok elé. A praktikus gondolkodás lefordítása egy-egy alkalmazás nyelvezetére gyakran szembesít azokkal a rejtett észjárás sablonokkal, melyek tanulónként eltérő módon akadályát képezhetik a hatékony és gyors tanulásnak. Sokszor ezek áthidalását elintézzük annyival, hogy gyakorlásra buzdítjuk a tanulót, mely előbb-utóbb eredményre vezet, bár fogalmunk sincs arról, hogy mi történik a tanuló elméjében. Ezirányú nyomkövetéshez olyan tananyagokra van szükség, melyben a logikai lépések könnyen azonosíthatók. Az alábbiak ezt célozzák.

2.1 A hardver építőkövei és működésük

A logikai kapuktól a működő számítógépig hosszú szellemi út vezet. A közoktatásban elnagyolt, és mozaikszerű képet festünk erről a folyamatról. Egy négy bites, négy műveletes ALU (Aritmetikai Logikai Egység) felépítése "kézzelfoghatóvá" teszi az említett út lényeges vonatkozásait, különös tekintettel a modellezés eltérő absztrakciós szintű megvalósíthatóságára.

Az Excelben a cellahivatkozás, és a HA függvény lehetővé teszi a NAND-kapura épülő kapurendszer egyszerű felépítését. Az 1. ábra ennek néhány elemét mutatja be.

1. Ábra. Logikai kapuk felépítése

A fenti építőkockákból könnyen felépíthetjük a félösszeadót, az egy, majd négy bites teljes összeadót, a multiplexert, a négy bites AND és XOR függvényeket végrehajtó áramkört, végül a négy bites összeadó és kivonó áramkört. Dr. Istenes Zoltán interneten elérhető prezentációját¹ felhasználva útmutatóként sikerült működő képes, 4 bites aritmetikai logikai egység szimulátorát megépítenünk. A 2. ábra a folyamat egyik fázisát mutatja be.

2. Ábra. Félösszeadó megvalósítása Dr. Istenes Zoltán útmutató diájával

Az elkészült ALU bonyolultsága már elegendő ahhoz, hogy a tanuló valóban átérezze (hiszen ő építette fel) ennek az építkezésnek a nehézségét. A 3. ábra (bár erősen lekicsinyítve) mutatja az ALU összetettségét.

3. Ábra. A teljes 4 bites, 4 műveletes ALU

A munkafüzet tartalmát visszanagyítva a bal fölső sarokban található adat és vezérlő bitek módosításával tanulmányozhatóvá válik az áramkör működése.

Az, hogy az emberi elme hatalma a modellalkotási képességében rejlik szintén gyakran hangoztatott, és alkalmazott eszköze az oktatásunknak. Sajnos ritkán adódik alkalom arra, hogy ez ügyben erőteljes hűha élményben legyen részünk. Ha az áramkörünk tanulmányozásakor nem a felépülésre, hanem a működésre fókuszálunk, akkor a 4. ábrán látható formára egyszerűsíthető az áramkörünk.

4. Ábra Az 4 bites, 4 műveletes ALU logikai modellje

2.2 Algoritmusok működése

A négyjegyű függvénytáblázat "Informatika" fejezetében ábrázolt algoritmusok hatékony felhasználásához több absztrakciós szinten való jártasságra van szükség. E jártasság megszerzéséhez nyújthat hasznos segédeszközt a bemutatandó Excel munkafüzet. A rendező algoritmusok működésének megértését könnyítheti, ha a tanuló az absztrakt leírás konkrét működését tanulmányozhatja. Az 5. ábrán a beillesztéses rendezés működésének egy pillanatát látjuk.

	А	В	С	D	E	F	G	н	1	J	К	L	М	N	0	Р	
1		Alaph	nelyzet	a tömbelem indexe (sorszáma)	az adatsor elemei			i	j		FUT	ТАТ					
2								7	6								
3			a kezdő	1.	4			1	1								
4			elem	2.	34			2	2								
5	•	3	indexe	3.	12			3	3			Ciklus	i = m + 1	-től	n	-ig	
6	•	3	3.	4.	65			4	4								
7				5.	68			5	5				b := a[i]				
8			m	6.		56		6	6								
9				7.	71			7	7				j := i - 1				
10				8.	23			8	8								
11				9.	87			9	9				Ciklus amíg	j >= m	ÉS	a[j] > b	
12				10.	59			10	10								
13				11.	8			11	11					a[j+1] := a[j]	l		
14				12.	27			12	12								
15				13.	11			13	13					j := j - 1			
16				14.	94			14	14								
17			n	15.	47			15	15				Ciklus vége				
18			az utolsó	16.	39			16	16								
19			elem	17.	15			17	17				a[j+1] := b				
20	•	2	indexe	18.	75			18	18								
21	-	19			29			19	19			Ciklus vége					
22		·		20.	16			20	20								
23																	
24							A lépése	ek száma:	8								
25		Locoltán	424	1													
26		Lassitas	434					>									
27																	

Az alaphelyzet gombra kattintva egy rendezetlen adathalmazt kapunk, mely az ötödik oszlopban található. A futtatás hatására a beállított lassítás mértékében követhető az i és j ciklusváltozók értékének módosulása a nyolcadik és kilencedik oszlopban. Az algoritmus kiemeli a soron következő elemet, majd megkeresi a helyét a fölötte lévők között. Ez a működés könnyebben megérthető ha előbb látjuk, hogy mi történik, és csak azután kell szavakba önteni a történések lényegét.

2.3 Automatizált számonkérés

A tanulandó ismeretnek számos olyan eleme van, melyek lehetővé teszik olyan dolgozat összeállítását, melyet a munkafüzet automatikusan pontoz, és értékel. A 6. ábra egy ilyen dolgozat részletét mutatja. Ebben lenyíló listákból kell kiválasztania a tanulónak az általa megfelelőnek gondolt elemet. Az értékelést egy egyszerű makrő végzi, mely az utólagos manipulációk elkerülése érdekében csak egyszer futtatható.

6. Ábra. Informatikai dolgozat részlete az alapfogalmak témaköréből

3 Matematikai ismeret elsajátításának támogatása

A függvénytranszformációk megértése papírral és ceruzával fáradtságos, és erős belső motiváltságot feltételező útja. Excellel kiküszöbölhetjük a folyamatnak a legtöbbet "ártó", legfárasztóbb részét, a számolást. Így csak arra kell koncentrálnia a tanulónak, hogy a forma paraméterei melyik transzformációval vannak kapcsolatban. A megvalósítás formai bemutatása érdekben példaként az abszolútérték függvényhez tartozó munkafüzetoldalt tekintjük a 7. ábrán.

7. Ábra. Az abszolútérték függvény transzformációi

A léptető az előjelváltást teszi lehetővé, a gördítősávokkal pedig a többi paraméter (melyek közelében vannak) módosítható. Tapasztalatom szerint gyorsabb, és stabilabb lesz az elsajátítás, ha ezzel a tanuló előbb "eljátszadozik", majd megbeszéljük, és a matematika nyelvére fordítjuk a felismert kapcsolatrendszert.

4 Excel használatának lehetőségei a fizika tanításában

A fizika viszonya a számoláshoz egyértelművé tesz minden olyan alkalmazás használatát, melynek lényege a számolás. Az Excel nem csak ebből a szempontból válik érdemessé a fizikán belüli felhasználásra, hanem azért is, mert az adatokat sorokban és oszlopokban képes megjeleníteni, valamint a függvényeket grafikusan ábrázolni. Az alábbi példák csak ízelítők a lehetőségek igen gazdag tárházából.

4.1 A termodinamika második főtétele

A hőtan tanításának hatékonysága azon is múlik, hogy elegendő számú feladatot tudunk-e megoldani ahhoz, hogy az általánosító következtetésünk a tanulók szemében kellően megalapozott legyen. Ez különösen akkor lehet gond, ha a feladatok számolásigényesek. Az óraszám korlátok csak úgy küzdhetők le, ha megfelelő eszközzel megtámogatjuk munkánkat. A 8. ábrán két gáztartályt szimbolizálunk, melyekből véletlenszerűen kerülnek részecskék az egyikből a másikba.

A kezdőállapot (csak a baloldali tartályban vannak részecskék) utáni első 100 véletlenszerű részecskemozgás eredményeként 144 marad a bal oldaliban, és 56 kerül a jobb oldaliba. Újabb cserék után tapasztalható tendenciát számtalanszor megfigyelhetik a tanulók a diagramon is. A 9. ábra az egyensúly környékének egy pillanatát jeleníti meg.

9. Ábra. Az egyensúlyi állapot.

4.2 A kvantumszámok viszonya

Az atomfizikai ismeretek vizualizálása hatékony eszköze az elsajátításuknak. Egyik ilyen lehetőség a kvantumszámok viszonyának dinamikus ábrázolása. A 10. ábra olyan munkalapot mutat, melyben a beviteli listából (a lenyíló eszközzel) kiválasztott főkvantumszámhoz tartozó többi kvantumszámérték már automatikusan megjelenik.

1	Α	В	С	D	Е	F	G	Η	T	J	K	L	Μ	Ν	O P Q	R S T	UVV	V X	Y Z	AA
2					k	V	8	ı r	n t	: ι	11	n	S	; Z	: á m	o k				
3		n		L										m				S	72	
4		fő	m	ellék								r	ná	gno	eses			spin	elektrons	zám
5		héj	а	lhéj	_															
6		Р																		
7			6	_			-	_							-					
8		6	n	5	5	4	3	2	1	0	-1	-2	-3	-4	-5			-1/2 +1/2	22	
9			g	4		4	3	2	1	0	-1	-2	-3	-4				-1/2 +1/2	18	
10			T.	3			3	2	1	0	-1	-2	-3					-1/2 +1/2	14	
11			d	2				2	1	0	-1	-2						-1/2 +1/2	10	
12			р	1					1	0	-1							-1/2 +1/2	6	
13			s	0						0								-1/2 +1/2	2	
14																				
15																				
16																				
17																				
18																				
19																				
20																				
21									ć											
								10	. A	bra	a. /	٩k	(Va	Int	umszám	nok viszo	onya			

4.3 Az elemek periódusos rendszere

A tudományos megismerés egyik legjelentősebb lépése az elemek periódusos rendszerének meglátása volt. A szabályosság felismerésén túlmenően egy másik igen hasznos hozadéka is van ennek a lépésnek. Ez pedig nem más, mint az ismeret, és annak ábrázolása közötti kapcsolat fontossága. A periódusos rendszer igen jó példája ennek, hiszen számtalan ábrázolási formájával találkozhatunk attól függően, hogy a rendszer mely elemét kívánja az ismeretközlő hangsúlyozni.

Az atomfizika oktatásában újabb ábrázolási lehetőség kínálkozik. Ebben az elektron konfiguráció alakulását követketjük nyomon a rendszám függvényében. Fejlesztésem eredményeként született dinamikus táblázatban a gördít sávval módosítható a rendszám. A 11. ábrán leolvashatjuk az aktuális elem (Francium) elektron konfigurációján túlmenően az alacsonyabb rendszámú elemek pozícióját is.

	Α	В	С	D	E	F	G	Н		J	Κ	L	Μ	N	0	Ρ	Q	R				
1																						
2		Héj	Alhéj																			
3							~		-	E	lektro	onszár	n	40		40	40					
4		TO-	mellek-		1	2	3	4	5	6	1	ŏ	9	10	11	12	13	14				
6	r	kvantumkvantum- szám szám											1									
7		320111	32411															-				
8	К	1	S	2	Н	He								re	ndszá	m:	8	7				
9	L	2	S	2	Li	Be																
10			р	6	В	С	Ν	0	F	Ne												
11	М	3	S	2	Na	Mg																
12			р	6	AI	Si	Р	S	CI	Ar												
13			d	10	Sc	Ti	V	Cr	Mn	Fe	Co	Ni		Cu								
14			a	10										Zn								
15	Ν	4	S	2	К	Ca																
16			р	6	Ga	Ge	As	Se	Br	Kr												
17					Y	Zr		Nb	Мо		Ru	Rh		Pd								
18			d	d	d	d	d	10					Тс					Ag				
19														Cd								
20			£	44		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb				
21			I	14														Lu				
22	0	5	S	2	Rb	Sr																
23			р	6	In	Sn	Sb	Те	- I	Xe												
24			d	10	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg								
25			f																			
26																						
27	Ρ	6	S	2	Cs	Ba																
28			р	6	TI	Pb	Bi	Po	At	Rn												
29			d																			
31	0	7	S	1	Fr																	
32	4	,																				

11. Ábra. a Francium elektron konfigurációja

Köszönetnyilvánítás

Köszönetemet fejezem ki annak a sok száz tanulónak, akik az elmúlt években lelkes szereplői (használói) voltak fejlesztő munkámnak, miközben tapasztalataikkal, visszajelzéseikkel segítették kialakítani a tartalom és a forma egységét.

Források/Hivatkozások

[1] Dr. Istenes Zoltán: Az aritmetikai logikai egység működése, megvalósítása (SZF4mtt.ppt) http://pszt.inf.elte.hu/index.php/munkatarsak/65-dr-istenes-zoltan.html