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 Abstract 
The paper presents an application of the Symmetrical Optimum 
method under the form of the Extended Symmetrical Optimum 
method to the design of controllers for servo systems with 
variable inertia. A brushless direct current servo system with 
variable inertia is considered as the plant. A proportional-
integral controller is tuned for the speed control of this plant 
using the Extended Symmetrical Optimum method. The results 
are shown for four values of the moment of inertia and two 
variable reference input shapes. 

1 Introduction  

Successful applications of brushless direct current servo systems are based on several 
controllers. Such controllers are: predictive controllers [1], direct torque control [2] and augmented 
with indirect flux control [3], optimal controllers [4], fault diagnosis in control [5], proportional-
integral (PI), and proportional-integral-derivative (PID) and fuzzy control [6]–[10]. 

The sliding mode / variable structure controllers [11]–[13] are relevant for servo control where 
simple and fast solutions are needed. In this view the simplicity and robustness of these controllers 
gives successful servo system control applications reported in [14]–[16]. 

The Symmetrical Optimum method was initially formulated in [17], [18], to tune PI and PID 
controllers for benchmark-type plant models. This method became widely applied in the field of 
electrical drives, servo systems and robotics. Several generalizations and applications are 
presented as follows. 

The Extended Symmetrical Optimum method [19], [20], is characterized by only one design 
parameter, which offers flexibility in imposing the phase margin and the other performance indices. 
Gain and phase margins are considered as performance indices in [21] and the damping factor in 
[22]. Combinations with state feedback control and model predictive control are presented in [23]–
[25]. The generalization to plants with more than one integrator is proposed and extensively 
investigated in [26]–[30]. Applications to fuzzy controllers tuning are given in [31]–[34]. Stability 
issues including robust stability, controller robustness and pole placement techniques are 
discussed in [35], [36]. Recent combinations with phase locked loop-based algorithms and robotics 
are presented in [37]–[42]. 

This paper applies the Extended Symmetrical Optimum method to the design of a PI 
controller for a brushless direct current servo system with variable inertia. The controlled plant 
represented by the brushless direct current motor is modeled using the detailed and simplified 
equations presented in [6], [7]. 

The paper is organized as follows: the simplified model of the plant is presented in Section 2. 
The design of the PI controller for speed control is presented in Section 3. The case study, the 
simulation results and the conclusions are given in Sections 4 and 5. 
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2 Simplified Model of the Plant 

The following state-space equations of the detailed model of the plant are obtained from [6] by 
neglecting the friction in speed control applications if the three state variables are 

aix 1
, 

mx 2
 

and 
tfx 3
: 
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where )(tJ e
 is the variable moment of inertia, )(tmLoad

 is the load torque, which is also the 

external disturbance, )(tia
 is the current, )(tm  is the variable angular speed, )(tvt

 is the linear 

speed, )(tu  is the control signal, )(tft
 is the force that acts on the strip in the framework of a 

winding process, and )(trt
 is the measured radius of the strip that is rolled on rotating drum. The 

other parameters in (1), which are specific to the electrical part of the motor and to the mechanical 
part of the motor, are constant. As shown in [7], the linearization of the model (1) of the plant at 
representative operating points leads to the following model as benchmark-type transfer function 
for speed control: 

 ,
) 1)( 1(

)(
1TsTss

k
sP P






 (2) 

where 
Pk  is the gain of the plant, 

1T  is the mechanical time constant, 
T  is the small time 

constant, 
TT1
. 

The parameters 
Pk  and 

1T  in (2) are time variant because they depend on )(tJ e
. The 

controllers can be designed and tuned relatively easily if the inertia )(tJ e
 varies within a 

reasonable range. The variation of )(tJ e
 is achieved by the continuous variation of the radius )(trt

 

in winding processes. However, the computation of )(tJ e
 is not simple. Moreover, the model 

presented in (2) is an approximate model that can be better used in position control applications, 
but the approximation is justified due to the ranges of the time constants, and the tuning method 
ensures robustness. 

3 Design of speed controller 

The Extended Symmetrical Optimum method recommends PI controllers for the plant with 
the transfer function presented in (2). The transfer function of a PI controller is: 

 ), 1()( i
c Ts
s

k
sC   (3) 

where 
ck  is the gain of the controller gain and 

iT  is the integral time constant of the 

controller. The tuning conditions for the PI controller (3) are [19], [20]: 

 ,
1

2




Tk
k

P

c
 (4) 

 ,  TTi
 (5) 

where   is the design parameter. The right choice of this design parameter according to the 

diagrams given in [19] and [20] offers a compromise to several performance indices imposed to the 
control system: rise time, settling time, overshoot and phase margin. Kessler’s value [17], [18] is 

 4,   (6) 
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and the recommended extended domain for the parameter   is [19], [20]: 

 .204   (7) 

The application of the tuning conditions (4) and (5) leads to the following open-loop transfer 
function )(sGopen

 and to closed-loop transfer function )(sGclosed
 with respect to the reference input: 

 ,
)1(

 1
)(

22 sTsT

sT
sGopen




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
  (8) 
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 (9) 

Equation (9) shows the presence of a zero and of three poles. The compensation of a zero 
and of one or more poles can lead to performance improvement. Therefore, the two-degrees-of-
freedom (2-DOF) control system structure can be used as shown in Figure 1, where r  is the 
reference input, y  is the regulated output, )(sF  is the transfer function of the reference input filter, 

1r  is the filtered reference input, yre  1
 is the control error, CU is the comparing unit, u  is the 

control signal and d  is the disturbance input. 

 

Figure 1. The structure of the 2-DOF control system 

The simplest version of reference input filter from [19] and [20] is applied in this paper. The 
transfer function of the filter is: 

 .
1

1
)(

sT
sF


  (10) 

The filter presented in (10) ensures improved control system performance because the 
transfer function of the closed-loop system is modified to )(2 sG DOF

: 

 .
1 

1
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22332
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4 Results of digital simulation 

The design aspects presented in Section 3 are applied to the speed control of a brushless 
direct current servo system considered as controlled plant and described in [43]. This laboratory 
servo system is advantageous because of the modification of the inertia. The values of a set of 
parameters of this laboratory servo system are [6], [7], [43]: 2p ,   1sR , H 02.0sL , 

V 220DCV , and the nominal inertia 2

0 m kg 005.0eJ . The values of the other parameters are 

presented in [43]. The values of the parameters in (1) are:   1aR , H 02.0aL , 088.0ek , 

0206.0Ek , 02.0mk , 054.0bc , 0)( tJe
  because const)( tJe

, and 0)( tmLoad
. 

The application of a simple least-squares identification leads to the well approximated 
transfer function (2) of the controlled plant, with the following parameters obtained for the nominal 

value of the inertia )(tJ e
, namely 2

0 m kg 005.0eJ : 
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The value of the design parameter of the PI controller is set as: 

 9.   (13) 

The tuning conditions (4) and (5) are applied and the values of the parameters of the PI 
controller used as a speed controller are: 

 
s. 0135.0

,100094.5 4





i

c

T

k
 (14) 

The simulation results expressed as the variation of the angular speed as regulated output 

my   for one form of variation of the reference input is illustrated in Figure 2. Figure 2 shows that 

the reference input is variable because this brushless direct current motor is used as a servo 
system. The results presented in Figure 2 are obtained for four values of the inertia: the nominal 

value 2

0 m kg 005.0eJ , a five times smaller value 2m kg 001.0eJ , a three times larger value 
2m kg 015.0eJ  and a five times larger value 2m kg 025.0eJ . 

The simulation results for another form of variation of the reference input are presented in 
Figure 3. These results are obtained for the same four values of the inertia as those considered in 
Figure 2. 

The simulation results presented in Figure 2 and Figure 3 show the operation of the designed 
controller on the exact nonlinear, time-varying system described by (1). The disturbance input is 
not applied. 

The simulation results presented in Figure 2 a and Figure 3 a prove the good control system 
performance of the speed control system. But the zoomed plots presented in Figure 2 b and Figure 
3 b show that the performance depends on the inertia. This can be critical for abrupt changes of 
the reference input as, for example, for step-type reference inputs. The performance can be 
improved if a more complicated reference input filter is designed. 

5 Conclusions 

This paper has presented an application of one generalized version of the Symmetrical 
Optimum method to the design of speed controllers for brushless direct current servo systems. 
Simple PI controllers are obtained and tested by simulation results for four inertias considering two 
forms of variations of the reference inputs. 

The results of the digital simulations show the good performance of the speed control 
systems. The effects of the variable inertia are also shown. These effects require the design of 
adaptive controllers and/or nonlinear controllers. 
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Figure 2. a: the regulated output and the first form of the reference input for four values of 
eJ : 

2

0 m kg 005.0eJ  (1), 2m kg 001.0eJ  (2), 2m kg 015.0eJ  (3), 2m kg 025.0eJ  (4), b: zoomed 

regulated output and reference input 
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Figure 3. a: the regulated output and the second form of the reference input for four values of 
eJ : 

2

0 m kg 005.0eJ  (1), 2m kg 001.0eJ  (2), 2m kg 015.0eJ  (3), 2m kg 025.0eJ  (4), b: zoomed 

regulated output and reference input 

Future research will be focused on the application of the Magnitude Optimum method in the 
design of the controllers. Several extensions of this method can be considered [44]–[48]. The 
validation of the PI controllers as digital controllers in real experiments will be of interest and 
associated with several specific nonlinearities including the application of digital anti-windup 
blocks. 
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