

ON EXTRACTION OF P-CONFIGURATIONS

Attila Végh1*

¹ Department of Natural Sciences, GAMF Faculty of Engineering and Computer Science, John von Neumann University, Hungary https://doi.org/10.47833/2021.2.CSV.002

Keywords:	Abstract
parallelotope	Consider a parallelotope $\mathcal P$ and its dual polytope $\mathcal P^*$. The paral-
extraction	lelotope configuration or the p-configuration is a system of lines
p-configuration	and points projected vertices and edges of the polytope \mathcal{P}^* from
Article history:	the center of the polytope \mathcal{P}^* to a special $(n-1)$ -dimensional hyperplane. The extraction of the parallelotope defines an extraction of the p-configuration, as well. In this paper we examine properties of the extraction of the p-configuration.
Received 29 May 2021	
Revised 16 July 2021	
Accepted 25 Aug 2021	

1 Configurations

I have described the properties of the parallelotopes and of the p-configurations in details in [7]. In the current paper I will briefly summarize the most important concepts and I will investigate the extraction of the p-configurations.

A configuration is a system of p points and g straight lines arranged in a plane in such a way that every point of the system is incident with a fixed number γ of straight lines and every straight line of the system is incident with a fixed number π of points. Notation: (p_{γ}, g_{π}) .

The following relation must be true for every configuration:

$$p \cdot \gamma = g \cdot \pi. \tag{1}$$

The configurations in which the number of points is equal to the number of lines, i.e. for which p = g and consequently $\gamma = \pi$ are called symmetric or balanced configurations. For such a configuration the notation p_{γ} is used by [3], [6].

 (3_2) symmetric

 $(6_2, 4_3)$ nonsymmetric

Figure 1. Configurations in the plane

2 Parallelotopes

The *parallelotope* \mathcal{P} is a convex polytope whose translated copies tile the space in a face to face manner. The centers of the parallelotopes form an *n*-dimensional lattice. In the plane there are two types of parallelotopes: parallelograms and centrally symmetric hexagons.

```
*Corresponding author. Tel. +36 76 516 438
E-mail address: vegh.attila@gamf.uni-neumann.hu
```

Parallelotopes were characterized by B. A. Venkov[8] and later P. McMullen[5] in the following way: a polytope \mathcal{P} is a parallelotope if and only if \mathcal{P} is centrally symmetric, each facet of \mathcal{P} is centrally symmetric, and the 2-dimensional orthogonal projection along any (n-2)-face of \mathcal{P} is either a parallelogram or a centrally symmetric hexagon.

The edges of the parallelogram and the centrally symmetric hexagon are projections of the facets of the parallelotope \mathcal{P} . These facets form a 4- or a 6-*belt*, respectively.

B. A. Venkov introduced the concept of the parallelotope of non-zero width in the direction of a k-subspace X^k . A parallelotope \mathcal{P} has non-zero width along X^k if the intersection $\mathcal{P} \cap (X^k + \mathbf{a})$ is either k-dimensional or empty for every translation vector \mathbf{a} . Denote by F^{n-1} a facet of the parallelotope \mathcal{P} and by t the lattice vector between the centers of the two nearest parallelotopes \mathcal{P} and \mathcal{Q} where \mathcal{P} and \mathcal{Q} have the common facet F^{n-1} . This lattice vector is called *relevant vector* of the facet F^{n-1} by [2].

Theorem 1. (B. A. VENKOV [9]) Let \mathcal{P} be an n-dimensional parallelotope of non-zero width along X^k . Then the projection of \mathcal{P} along X^k is a parallelotope (of dimension n - k) and the lattice vectors \mathbf{t}_i related to the facets F_i^{n-1} which are parallel to X^k generate an (n - k)-dimensional lattice spanning a space X^{n-k} which is transversal to X^k .

By this theorem for k = n - 2 relevant vectors of a 4- or 6-belt span a 2-dimensional lattice, thus these relevant vectors are in a plane.

Consider the parallelotopes \mathcal{P} and \mathcal{Q} of dimension n. For k = 1 denote by $S(\mathbf{z})$ the segment X^k of the direction \mathbf{z} and of the length z. If there exists a direction \mathbf{z} for which $\mathcal{P} \oplus S(\mathbf{z}) = \mathcal{Q}$, where \oplus denotes the Minkowski sum, then \mathcal{P} is called the *contraction* of \mathcal{Q} and \mathcal{Q} is the *extraction* of \mathcal{P} . The following theorem provides an important condition for the extraction of the parallelotope \mathcal{P} to be a parallelotope.

Theorem 2. [1] Let \mathcal{P} be a parallelotope and \mathbf{z} be a vector. $\mathcal{P} \oplus S(\mathbf{z})$ is a parallelotope if and only if \mathbf{z} is parallel to at least one facet of each 6-belt.

Definition 1. The shadow boundary of a parallelotope \mathcal{P} in the direction \mathbf{z} consists of all boundary points \mathbf{x} of \mathcal{P} for which the line $\{\mathbf{x} + \lambda \mathbf{z} | \lambda \in \mathbb{R}\}$ is a support line of \mathcal{P} . (There is no point of the line $\{\mathbf{x} + \lambda \mathbf{z} | \lambda \in \mathbb{R}\}$ belonging to the interior of \mathcal{P}). It is denoted by $sh_{\mathbf{z}}(\mathcal{P})$.

It is well known that the shadow boundary of a convex polytope is the union of its several (n-1)and (n-2)-dimensional closed faces [4].

3 The p-configurations

Every *n*-polytope has a dual structure. It can be obtained by interchanging its vertices and facets, edges and (n - 2)-dimensional faces, and so on, generally interchanging its (j - 1)-dimensional elements and (n - j)-dimensional elements, preserving coincidence between elements. We use duality for parallelotopes. The dual polytope of the parallelotope P is denoted by P^* . Facets of a parallelotope \mathcal{P} are centrally symmetric, thus we can define vertices of dual polytope P^* by centers of facets of the parallelotope \mathcal{P} . For example consider the blue truncated octahedron in the picture 4. The dual polytope is the red polytope, which is not a parallelotope.

Figure 2. Parallelotope configuration

Consider the dual polytope \mathcal{P}^* of a parallelotope \mathcal{P} . The parallelotope configuration or the pconfiguration is a system of lines and points projected vertices and edges of the polytope \mathcal{P}^* from the center of the polytope \mathcal{P}^* to an (n-1)-dimensional hyperplane, which is parallel to a hyperplane containing the center of the parallelotope \mathcal{P} and not containing any vertex of the dual polytope \mathcal{P}^* . In this manner every parallelotope \mathcal{P} determines a p-configuration denoted by II. A line of a pconfiguration II is called p-line. A vertex of a p-configuration II is called p-vertex.

The notation of the p-configuration is

$$((p_1)_{\gamma_1}, (p_2)_{\gamma_2}, \dots, (p_k)_{\gamma_k}; ((g_1)_{\pi_1}, (g_2)_{\pi_2}, \dots, (g_l)_{\pi_l}),$$
(2)

where p_i is the number of points which belong to γ_i lines and g_i is the number of lines which contain π_i points. The sum of p_i is equal to the number of all points of the p-configuration and the sum of g_i is equal to the number of all lines of the p-configuration.

I proved the following properties of the p-configuration in [7].

Theorem 3. Every p-line contains two or three points of the p-configuration Π . Every point of the p-configuration Π belongs to at least (n-1) straight lines, these lines generate a (n-1)-dimensional hyperplane.

Theorem 4. The intersection of two uniplanar p-line is a point of the p-configuration Π .

Definition 2. The p-configurations Π_1 and Π_2 are combinatorially equivalent, if there is a bijection between the p-vertices and the p-lines of the p-configurations Π_1 and Π_2 which preserves the point-line coincidence. We denote combinatorially equivalent p-configurations by $\Pi_1 \cong \Pi_2$.

4 Parallelotopes and p-configurations

The pair of two centrally symmetric k-dimensional faces of the parallelotope \mathcal{P} is denoted by PF^k and the set of parallel k-dimensional faces of the parallelotope \mathcal{P} is denoted by $\langle PF^k \rangle$. Similarly the pair of two centrally symmetric k-dimensional faces of the dual polytope P^* of the parallelotope P is denoted by P^*F^k . If it is not ambiguous, the two opposite k-dimensional faces PF^k are called k-dimensional face. Similarly two opposite vertices PF^0 are called vertex of the parallelotope \mathcal{P} .

Consider a *k*-dimensional convex polytope. If all vertices and all edges of the polytope are p-vertices and p-segments of the p-configuration Π and the interior of the polytope does not contain p-vertices or p-segments, then the system of p-vertices and p-segments of the polytope is called *k*-dimensional face of the p-configuration Π and it is denoted by ΠF^k . We remark that the convex polytope is defined in projective sense. The *k*-dimensional subspace containing the face ΠF^k is denoted by $\langle \Pi F^k \rangle$ and the (n-1)-dimensional hyperplane containing the p-configuration Π is denoted by $\langle \Pi F^k \rangle$.

Lemma 1. Consider an (n-1)-dimensional p-configuration Π corresponding to an *n*-dimensional parallelotope \mathcal{P} . There is a bijection between an (n-k)-dimensional face PF^{n-k} of the parallelotope \mathcal{P} and a (k-1)-dimensional face ΠF^{k-1} of the p-configuration Π .

Proof. By the duality there is a bijection between the (n-k)-dimensional face PF^{n-k} of the parallelotope \mathcal{P} and the (k-1)-dimensional face \mathcal{P}^*F^{k-1} of the dual polytope \mathcal{P}^* . The central projection maps a (k-1)-dimensional face \mathcal{P}^*F^{k-1} of the dual polytope \mathcal{P}^* to a (k-1)-dimensional polytope F^{k-1} . The central projection preserves the convexity (in projective sense) and the coincidence. There is a one-to-one correspondence between the vertices and edges of the (k-1)-dimensional face \mathcal{P}^*F^{k-1} of \mathcal{P}^* and the vertices and edges of the (k-1)-dimensional polytope F^{k-1} and of Π . Thus the (k-1)-dimensional polytope F^{k-1} is a (k-1)-dimensional face ΠF^{k-1} of Π .

In other direction if ΠF^{k-1} is a (k-1)-dimensional face of Π then vertices of ΠF^{k-1} are the central projections of vertices of the dual polytope \mathcal{P}^* . The interior of the convex hull C of these vertices contains only boundary points of \mathcal{P}^* otherwise the interior of ΠF^{k-1} contains p-vertices or p-segments of Π , as well. Thus the convex hull C is a (k-1)-dimensional face of Π because if the dimension of the convex hull C is not (k-1), then the dimension of the face of Π is different, as well. A (n-k)-dimensional face of the parallelotope \mathcal{P} corresponds to this (k-1)-dimensional face of Π . Consequently there is a bijection between the (n-k)-dimensional face PF^{n-k} and the (k-1)-dimensional face ΠF^{k-1} .

Further on ΠF^{k-1} and PF^{n-k} denote the corresponding faces of the p-configuration Π and of the parallelotope \mathcal{P} .

Lemma 2. Consider an (n-k)-dimensional face PF^{n-k} and an (n-j)-dimensional face PF^{n-j} of the parallelotope \mathcal{P} and the corresponding (k-1)-dimensional face ΠF^{k-1} and (j-1)-dimensional face ΠF^{j-1} of the (n-1)-dimensional p-configuration Π . $PF^{n-j} \subseteq PF^{n-k}$ if and only if $\Pi F^{k-1} \subseteq \Pi F^{j-1}$.

Proof. By the property of the duality $PF^{n-j} \subseteq PF^{n-k}$ is satisfied if and only if $\mathcal{P}^*F^{k-1} \subseteq \mathcal{P}^*F^{j-1}$ where \mathcal{P}^*F^{k-1} and \mathcal{P}^*F^{j-1} are faces of the dual polytope \mathcal{P}^* . The central projection preserves the relation \subseteq , consequently $\mathcal{P}^*F^{k-1} \subseteq \mathcal{P}^*F^{j-1}$ is equivalent to $\Pi F^{k-1} \subseteq \Pi F^{j-1}$.

Lemma 3. Consider an (n - j)-dimensional face PF^{n-j} and all (n - k)-dimensional faces PF_i^{n-k} of the parallelotope \mathcal{P} for which $PF^{n-j} \subseteq PF_i^{n-k}$ and consider the corresponding (j - 1)-dimensional face ΠF^{j-1} and (k - 1)-dimensional faces ΠF_i^{k-1} of the (n - 1)-dimensional p-configuration Π . $PF^{n-j} = \bigcap_i PF_i^{n-k}$ if and only if $\Pi F^{j-1} = \operatorname{conv} \left(\Pi F_i^{k-1} \right)$.

Proof. Similarly to lemma 2 it is easy to see that the statement is satisfied by the property of the duality and the central projection. We remark that the faces ΠF_i^{k-1} are all (k-1)-dimensional faces of the (j-1)-dimensional face ΠF^{j-1} for which $\Pi F_i^{k-1} \subseteq \Pi F^{j-1}$. Q.e.d.

By the definition of the p-configuration it can easily be seen that there is a bijection between a point $\langle \Pi F^0 \rangle$ of Π and a facet $\langle PF^{n-1} \rangle$ of \mathcal{P} and between a segment ΠF^1 of Π and an (n-2)-dimensional face PF^{n-2} of \mathcal{P} . Similarly according to theorem 3 a 1-dimensional line $\langle \Pi F^1 \rangle$ corresponds in a one-to-one manner to parallel (n-2)-dimensional faces $\langle PF^{n-2} \rangle$.

By lemma 1 there is a bijection an (n-1)-dimensional face ΠF^{n-1} of Π and the vertex PF^0 of \mathcal{P} . The set $\langle PF^0 \rangle$ consists of all vertices of the parallelotope \mathcal{P} , thus the set of all facets \mathcal{P}^*F^{n-1} of the dual polytope \mathcal{P}^* corresponds to the set $\langle PF^0 \rangle$. The central projection of all facets \mathcal{P}^*F^{n-1} of the dual polytope \mathcal{P}^* fills the (n-1)-dimensional hyperplane without gaps. Consequently there is a one-to-one correspondence between the (n-1)-dimensional hyperplane $\langle \Pi F^{n-1} \rangle$ of Π and vertices $\langle PF^0 \rangle$ of \mathcal{P} and therefore $\langle \Pi F^{n-1} \rangle = \langle \Pi \rangle$.

These special cases are generalized in the following lemma.

Lemma 4. Let \mathcal{P} be an *n*-dimensional parallelotope of non-zero width along X^{n-k} and let the elements of the set $\langle PF^{n-k} \rangle$ be parallel to X^{n-k} . There is a bijection between the set $\langle PF^{n-k} \rangle$ of the parallelotope \mathcal{P} and the set of a (k-1)-dimensional subspace $\langle \Pi F^{k-1} \rangle$ of the p-configuration Π for which $\langle \Pi F^{k-1} \rangle \cap \Pi$ is a (k-1)-dimensional p-configuration Π^{k-1} .

Proof.

Generally by theorem 1 the lattice vectors \mathbf{t}_i related to the facets PF_i^{n-1} which are parallel to X^{n-k} generate a k-dimensional lattice spanning a space X^k , where $i \in I$. The center points of these facets PF_i^{n-1} generate the dual polytope D^k of a k-dimensional parallelotope \mathcal{P}^k . By the definition of the p-configuration the central projection of the polytope D^k is a (k-1)-dimensional p-configuration $\Pi^{k-1} \subseteq \Pi$.

By theorem 1 the space X^k does not contain the center points of the facets which are not parallel to X^{n-k} , thus the (k-1)-dimensional hyperplane $\langle \Pi^{k-1} \rangle$ does not contain other p-line or p-vertex of the p-configuration Π , consequently

$$\left\langle \Pi^{k-1} \right\rangle \cap \Pi = \Pi^{k-1}.$$
 (3)

Consider an arbitrary (n - k)-dimensional face $PF^{n-k} \in \langle PF^{n-k} \rangle$. By lemma 1, a (k - 1)-dimensional face ΠF^{k-1} of Π corresponds to an (n - k)-dimensional face PF^{n-k} of \mathcal{P} . If $PF^{n-k} \subseteq PF_j^{n-1}$ for the facets PF_j^{n-1} where $j \in J \subseteq I$, then $\Pi F_j^0 \subseteq \Pi F^{k-1}$. On the other hand every vertex $\Pi F_j^0 \in \Pi^{k-1}$, therefore $\Pi F^{k-1} \subseteq \Pi^{k-1}$, consequently $\langle \Pi F^{k-1} \rangle = \langle \Pi^{k-1} \rangle$ because both sides are (k-1)-dimensional hyperplanes. Thus

$$\left\langle \Pi F^{k-1} \right\rangle \cap \Pi = \left\langle \Pi^{k-1} \right\rangle \cap \Pi.$$
 (4)

Consequently $\langle \Pi F^{k-1} \rangle \cap \Pi$ is a (k-1)-dimensional p-configuration Π^{k-1} .

Let $\overline{\Pi F}^{k-1}$ be an arbitrary (k-1)-dimensional face of Π . If $\overline{\Pi F}^{k-1} \subseteq \langle \Pi F^{k-1} \rangle$ and $\langle \Pi F^{k-1} \rangle \cap \Pi = \Pi^{k-1}$, then $\overline{\Pi F}^{k-1} \subseteq \Pi^{k-1}$ and the facets \overline{PF}_l^{n-1} corresponding to all vertices $\overline{\Pi F}_l^0$ of $\overline{\Pi F}^{k-1}$ are parallel to X^{n-k} . According to lemma 3 $\overline{PF}^{n-k} = \bigcap \overline{PF}_l^{n-1}$ for all l, thus \overline{PF}^{n-k} is parallel to X^{n-k} , consequently $\overline{PF}^{n-k} \in \langle PF^{n-k} \rangle$. Therefore there is a bijection between the set $\langle PF^{n-k} \rangle$ parallel to X^{n-k} and the (k-1)-dimensional hyperplane $\langle \Pi F^{k-1} \rangle$ for which $\langle \Pi F^{k-1} \rangle \cap \Pi = \Pi^{k-1}$. Q.e.d.

5 Extraction of p-configuration

Let Π be a *p*-configuration corresponding to a *n*-dimensional parallelotope \mathcal{P} . The dimension of Π is m = n - 1.

Definition 3. If the parallelotope \mathcal{P} has zero width in direction \mathbf{z} and $\mathcal{P} \oplus S(\mathbf{z})$ is an extraction of this parallelotope \mathcal{P} , then \mathcal{P} and $\mathcal{P} \oplus S(\mathbf{z})$ determine two p-configurations denoted by Π and $\Pi \oplus H(\mathbf{z})$. The p-configuration $\Pi \oplus H(\mathbf{z})$ is called an extraction of the p-configuration Π .

Theorem 5. Let \mathcal{P} be a parallelotope and \mathbf{z} be a direction, such that \mathcal{P} has zero width in direction \mathbf{z} . Then $\Pi \oplus H(\mathbf{z}) = \Pi \cup \Pi^{m-1}$, where Π^{m-1} is an (m-1)-dimensional p-configuration.

Proof. For the segment $S(\mathbf{z})$ and an *n*-dimensional parallelotope \mathcal{P} which has zero width in direction \mathbf{z} the parallelotope $\mathcal{P} \oplus S(\mathbf{z})$ contains 1-dimensional edges $\langle (\mathcal{P} \oplus S(\mathbf{z}))F^1 \rangle$ parallel to $S(\mathbf{z})$. Using lemma 4 one can see that an (m-1)-dimensional hyperplane $\langle (\Pi \oplus H(\mathbf{z}))F^{m-1} \rangle$ corresponds to parallel 1-dimensional edges $\langle (\mathcal{P} \oplus S(\mathbf{z}))F^1 \rangle$ where $\langle (\Pi \oplus H(\mathbf{z}))F^{m-1} \rangle \cap (\Pi \oplus H(\mathbf{z}))$ is an (m-1)-dimensional p-configuration Π^{m-1} . Thus $\Pi^{m-1} \subseteq \Pi \oplus H(\mathbf{z})$ and $\Pi \subseteq \Pi \oplus H(\mathbf{z})$ consequently $\Pi \cup \Pi^{m-1} \subseteq \Pi \oplus H(\mathbf{z})$.

On the other hand consider an arbitrary (k-1)-dimensional face $(\Pi \oplus H(\mathbf{z}))F^{k-1}$ of the pconfiguration $\Pi \oplus H(\mathbf{z})$. The (k-1)-dimensional face $(\Pi \oplus H(\mathbf{z}))F^{k-1}$ corresponds to the (n-k)dimensional face $(\mathcal{P} \oplus S(\mathbf{z}))F^{n-k}$ of the parallelotope $\mathcal{P} \oplus S(\mathbf{z})$. If the (n-k)-dimensional face $(\mathcal{P} \oplus S(\mathbf{z}))F^{n-k}$ is parallel to the direction \mathbf{z} then $(\Pi \oplus H(\mathbf{z}))F^{k-1} \in \Pi^{m-1}$. If the (n-k)-dimensional faces $(\mathcal{P} \oplus S(\mathbf{z}))F^{n-k}$ is not parallel to the direction \mathbf{z} then $(\Pi \oplus H(\mathbf{z}))F^{k-1} \in \Pi$. Consequently for an arbitrary (k-1)-dimensional face $(\Pi \oplus H(\mathbf{z}))F^{k-1} \in \Pi \cup \Pi^{m-1}$. Therefore $\Pi \cup \Pi^{m-1} \supseteq \Pi \oplus H(\mathbf{z})$. By $\Pi \cup \Pi^{m-1} \subseteq \Pi \oplus H(\mathbf{z})$ and $\Pi \cup \Pi^{m-1} \supseteq \Pi \oplus H(\mathbf{z})$ the equality holds.

The above (m-1)-dimensional p-configuration Π^{m-1} is called a p-subconfiguration.

Definition 4. The *p*-subconfigurations Π_1^{m-1} and Π_2^{m-1} are combinatorially equivalent, if $\Pi \cup \Pi_1^{m-1} \cong \Pi \cup \Pi_2^{m-1}$.

Theorem 6. Let $\Pi \oplus H(\mathbf{z})$ be an extraction of the *p*-configuration Π , then the intersection of the *p*-subconfiguration Π^{m-1} and an arbitrary *p*-line of the *p*-configuration Π is

- (P1) a p-line of the p-configuration Π
- (P2) a p-vertex of the p-configuration Π ,
- (P3) a p-vertex of the p-configuration $\Pi \oplus H(\mathbf{z})$, which is not a p-vertex of the p-configuration Π . In this situation the p-line has to contain two p-vertices of Π .

Proof. Case 1. If the (n-2)-dimensional faces $\langle PF^{n-2} \rangle$ are parallel to the direction \mathbf{z} , then the corresponding 1-dimensional p-line $\langle \Pi F^1 \rangle$ is a p-line of the p-configuration Π and of the p-subconfiguration Π^{m-1} , as well.

Case 2. If the (n-2)-dimensional faces $\langle PF^{n-2} \rangle$ are not parallel to the direction \mathbf{z} , then the (n-2)-dimensional faces $\langle PF^{n-2} \rangle$ intersect the shadow boundary $sh_{\mathbf{z}}(\mathcal{P})$ in two opposite facets PF_i^{n-1} or two (n-2)-dimensional faces $\overline{PF_i}^{n-2}$ because the shadow boundary of a convex polytope is the union of its several (n-1)- and (n-2)-dimensional closed faces. If the intersection is two facets PF_i^{n-1} , then the corresponding 1-dimensional p-line $\langle \Pi F^1 \rangle$ contains the corresponding p-vertex $\langle \Pi F^0 \rangle$.

Case 3. If the intersection is two (n-2)-dimensional faces $\overline{PF_i}^{n-2}$, then $\overline{PF_i}^{n-2} \oplus S(\mathbf{z})$ are facets $\overline{PF_i}^{n-1}$ of the parallelotope $\mathcal{P} \oplus S(\mathbf{z})$, consequently a 1-dimensional p-line $\langle \Pi F^1 \rangle$ corresponding to the (n-2)-dimensional faces $\langle PF^{n-2} \rangle$ intersects the p-subconfiguration Π^{m-1} in a new p-vertex corresponding to two opposite facets $\overline{(\mathcal{P} \oplus S(\mathbf{z}))F_i}^{n-1}$ of $(\mathcal{P} \oplus S(\mathbf{z}))$. If the (n-2)-dimensional faces $\langle PF^{n-2} \rangle$ of the parallelotope \mathcal{P} determine a 3-belt, then after the extraction it will be a 4-belt. Consequently the (n-2)-dimensional faces $\langle PF^{n-2} \rangle$ of the parallelotope \mathcal{P} determine a 2-belt, thus the 1-dimensional p-line $\langle \Pi F^1 \rangle$ contains two p-vertices of the p-configuration Π .

Definition 5. A *p*-line of the *p*-configuration Π is called a p3-line if the *p*-line contains three *p*-vertices. A *p*-vertex of the *p*-configuration Π is called a p3-vertex, if the *p*-vertex belongs to at least one p3-line. Let H^k be a *k*-dimensional subspace k < m.

$$V_{p3}^{k}(H^{k}) = \left\{ v_{i} | v_{i} \in H^{k} \cap \Pi, v_{i} \text{ a p3-vertex} \right\},$$
(5)

$$L_{p3}^{k}(H^{k}) = \left\{ l_{i} | l_{i} \in H^{k} \cap \Pi, l_{i} \text{ a p3-line} \right\}.$$
(6)

Definition 6. Let Π be a *p*-configuration and H^k be a *k*-dimensional subspace. For the set $V \subseteq V_{p3}^k(H^k)$ the generated set $\langle V \rangle$ is defined in the following manner:

• If $V = \{v_i\}$, then

$$\langle V \rangle = \langle v_i \rangle := \{ v_i \}. \tag{7}$$

• If $V = \{v_i, v_j\}$, then

$$\langle V \rangle = \langle v_i, v_j \rangle := \left\{ v_k | v_i, v_j, v_k \in l_i, l_i \in L_{p3}^k(H^k) \right\}.$$
(8)

• If |V| > 2, then

$$\langle V \rangle := \left\{ v_k | v_i, v_j, v_k \in l_i, l_i \in L_{p3}^k(H^k), v_i \in \langle V_i \rangle, v_j \in \langle V_j \rangle, V_i, V_j \subset V, V_i \cap V_j = \emptyset \right\}.$$
(9)

The generating system of the p3-vertices $V_{p3}^k(H^k)$ is $G\left(V_{p3}^k(H^k)\right)$, if $G\left(V_{p3}^k(H^k)\right) \subseteq V_{p3}^k(H^k)$ and $\left\langle G\left(V_{p3}^k(H^k)\right) \right\rangle = V_{p3}^k(H^k)$.

By theorem 3 every vertex v_j of the p-configuration Π belongs to at least (n-1) p-lines l_i and these lines generate an (n-1)-dimensional hyperplane. Consequently a basis can be choose form these p-lines which is denoted by $B(L_{v_i}^{n-1}) = \{l_i | v_j \in l_i, i = 1, ..., n-1\}.$

Definition 7. Consider a *m*-dimensional *p*-configuration Π and an (m-1)-dimensional hyperplane H^{m-1} . The (m-1)-dimensional hyperplane H^{m-1} is called a supplementer hyperplane of a *p*-configuration Π , if the hyperplane H^{m-1} and every *p*-line of the *p*-configuration Π has at least one common point and every *p*-line contains at most three *p*-vertices (along with the new points) and there is a generating system of p3-vertices $G\left(V_{p3}^{m-1}(H^{m-1})\right)$ for which $G\left(V_{p3}^{m-1}(H^{m-1})\right) \subseteq V(L_{v_i}^m)$ for any $v_i \notin H^{m-1}$, where $V(L_{v_i}^m) = \{v_k | v_k = l_i \cap H^{m-1} \text{ and } l_i \in B(L_{v_i}^{n-1})\}$ and the interior of the convex hull of points $V(L_{v_i}^m)$ does not contain any vertex of Π .

Lemma 5. Let $PF_{v_i}^{n-1}$ be a facet corresponding to a vertex $v_i \in \Pi$. If $PF_{v_i}^{n-1} ||Z$ for every vertex v_i of generating system $G\left(V_{p3}^{m-1}(H^{m-1})\right)$, then $PF_{v_k}^{n-1} ||Z$ for every vertex $v_k \in V_{p3}^{m-1}(H^{m-1})$, where Z is a hyperplane.

Proof. At first, if for every vertex $v_p \in G\left(V_{p3}^{m-1}(H^{m-1})\right)$ the facet $PF_{v_p}^{n-1}$ is parallel to Z for every vertex $v_p \in \langle v_p \rangle$ then for every set $\{v_m, v_n\} \subseteq G\left(V_{p3}^{m-1}(H^{m-1})\right)$ it holds that $PF_{v_q}^{n-1} ||Z$ for every vertex $v_q \in \langle v_m, v_n \rangle$ because $PF_{v_m}^{n-1} ||Z$ and $PF_{v_n}^{n-1} ||Z$ and by definition 6 $v_q, v_m, v_n \in l_i$, thus $PF_{v_q}^{n-1}, PF_{v_m}^{n-1}, PF_{v_n}^{n-1}$ are the facets of a 3-belt, consequently $PF_{v_q}^{n-1} ||Z$.

Generally suppose that for every set $V_j \,\subset V_i \subseteq G\left(V_{p3}^{m-1}(H^{m-1})\right)$ the facet $PF_{v_j}^{n-1}$ is parallel to Z for every vertex $v_j \in \langle V_j \rangle$. We prove that $PF_{v_i}^{n-1} \| Z$ for every vertex $v_i \in \langle V_i \rangle$. If $v_i \in \langle V_i \rangle$ according to definition 6 there is a $v_t \in \langle V_t \rangle$, $v_l \in \langle V_l \rangle$ such that $V_t, V_l \subset V_i$ and $V_t \cap V_l = \emptyset$, $v_t, v_l, v_i \in l_i, l_i \in L_{p3}^k(H^k)$, thus $PF_{v_l}^{n-1}, PF_{v_l}^{n-1}$ are the facets of a 3-belt and because of the assumptions $PF_{v_t}^{n-1} \| Z$ and $PF_{v_l}^{n-1} \| Z$ the facet $PF_{v_i}^{n-1}$ is parallel to Z.

Consequently $PF_{v_k}^{n-1} || Z$ for every vertex $v_k \in V_{p3}^{m-1}(H^{m-1}) = \left\langle G\left(V_{p3}^{m-1}(H^{m-1})\right) \right\rangle$.

Theorem 7. If an (m-1)-dimensional hyperplane H^{m-1} is a supplementer hyperplane of a pconfiguration Π , then there is a direction \mathbf{z} that $\mathcal{P} \oplus S(\mathbf{z})$ is a parallelotope and $\Pi^{m-1} \subseteq H^{m-1}$ for the p-subconfiguration Π^{m-1} of the p-configuration $\Pi \oplus H(\mathbf{z})$.

Proof. Since $|V(L_{v_i}^m)| = |B(L_{v_i}^m)| = n-1$ and the hyperplane H^{m-1} is a supplementer hyperplane, $G\left(V_{p3}^{m-1}(H^{m-1})\right) \subseteq V(L_{v_i}^m)$, thus $\left|G\left(V_{p3}^{m-1}(H^{m-1})\right)\right| \leq n-1$ and the number of the facets PF_G^{n-1} of \mathcal{P} corresponding to the generating system of the p3-vertices $G\left(V_{p3}^{m-1}(H^{m-1})\right)$ is at most (n-1), therefore the intersection of these facets is an at least 1-dimensional space Z. By lemma 5 every facet of \mathcal{P} corresponding to the p3-vertices of $V_{p3}^{m-1}(H^{m-1})$ are parallel to the space Z, consequently according to theorem 2 the $\mathcal{P} \oplus S(\mathbf{z})$ is a parallelotope for the segment $S(\mathbf{z}) \in Z$.

If $v_k \in V(L_{v_i}^m)$ and $v_k \in \Pi$, then the facet PF^{n-1} corresponds to the p-vertex $v_k = \Pi F^0$. If $v_l \in V(L_{v_i}^m)$ and $v_l \notin \Pi$ then there is a p-segment ΠF^1 , for which $\Pi F^1 \cap H^{m-1} = v_l$ and the (n-2)-dimensional face PF^{n-2} corresponds to the p-segment ΠF^1 . Consider an (n-1)-dimensional support hyperplane SF^{n-1} of the (n-2)-dimensional face PF^{n-2} . So SF^{n-1} corresponds to the p-segment ΠF^1 . $B(L_{v_i}^{n-1})$ is a basis of the p-lines $l_i \notin H^{m-1}$, $i = 1, \ldots, n-1$, thus the intersection of all facets PF_j^{n-1} corresponding to $\Pi F_j^0 \subset l_j \in L_j$ and all (n-1)-dimensional support hyperplanes SF_i^{n-1} corresponding to $\Pi F_j^0 \subset l_j \in L_j$ and all (n-1)-dimensional support hyperplanes SF_i^{n-1} corresponding to $\Pi F_j^0 \subset l_j \in L_j$ and all (n-1)-dimensional support hyperplanes SF_i^{n-1} for the segment S(z) the $\mathcal{P} \oplus S(z)$ is a parallelotope.

The facets PF_j^{n-1} and SF_i^{n-1} are equivalent to the facets $(\mathcal{P} \oplus S(\mathbf{z}))F^{n-1}$ thus for every $v_k \in V(L_{v_i}^m)$, $v_k = (\Pi \oplus H(\mathbf{z}))F^0$. Furthermore the intersection of the facets $(\mathcal{P} \oplus S(\mathbf{z}))F^{n-1}$ is a segment $S(\mathbf{z})$. By lemma 3 $(\Pi \oplus H(\mathbf{z}))F^{m-1}$ corresponding to the segment $S(\mathbf{z})$ contains all vertices $v_k \in V(L_{v_i}^m)$, consequently $\langle (\Pi \oplus H(\mathbf{z}))F^{m-1} \rangle = H^{m-1}$ because both (m-1)-dimensional hyperplanes contain the same *m*-dimensional simplex. By lemma 4 $\langle (\Pi \oplus H(\mathbf{z}))F^{m-1} \rangle \cap (\Pi \oplus H(\mathbf{z}))$ is an (m-1)-dimensional p-subconfiguration Π^{m-1} , thus $H^{m-1} \cap (\Pi \oplus H(\mathbf{z})) = \Pi^{m-1}$, consequently $\Pi^{m-1} \subseteq H^{m-1}$.

Definition 8. Consider the supplementer hyperplane H^{m-1} of a p-configuration Π . The vertices of $\Pi \cap H^{m-1}$ are defined by points v_i for which

- $(V1) \ v_i \in \Pi \text{ and } v_i \in H^{m-1},$
- (V2) $v_i = l_i \cap H^{m-1}$ where $l_i \not\subseteq H^{m-1}$.

The lines of $\Pi \cap H^{m-1}$ are defined by

- (L1) p-lines $l_i \in \Pi$ and $l_i \in H^{m-1}$,
- (*L*2) $S \cap H^{m-1}$ where *S* is a 2-dimensional plane generated by two p-lines l_i and l_j of the pconfiguration Π and $l_i, l_j \not\subseteq H^{m-1}$.

Theorem 8. For the supplementer hyperplane H^{m-1} of a p-configuration Π the intersection $\Pi \cap H^{m-1}$ is equal to the p-subconfiguration Π^{m-1} of the p-configuration $\Pi \oplus H(\mathbf{z})$.

Proof. By theorem 7, if an (m-1)-dimensional hyperplane H^{m-1} is a supplementer hyperplane of Π , then there is a direction \mathbf{z} such that $\mathcal{P} \oplus S(\mathbf{z})$ is a parallelotope and $\Pi^{m-1} \subseteq H^{m-1}$ for the p-subconfiguration Π^{m-1} of $\Pi \oplus H(\mathbf{z})$. According to theorem 6 and definition 8 (*P*2) is equal to (*V*1), (*P*3) is equal to (*V*2) and (*P*1) is equal to (*L*1), consequently it is sufficient to prove the equality for case (*L*2).

Let l be equal to $S \cap H^{m-1}$. By the case (L2) of the definition 8 p-lines l_i and l_j generate a 2-dimensional plane S. On the one hand we can choose l_i, l_j in such a way that the p-segments $\Pi F_i^1 \subseteq l_i$ and $\Pi F_j^1 \subseteq l_j$ have a common polygon $\Pi F^2 \subseteq S$. On the other hand $l_i, l_j \subseteq S$ and $l_i, l_j \not\subseteq H^{m-1}$, consequently $l_i, l_j \not\subseteq \Pi^{m-1}$ by theorem 7. Thus $l_i \cap \Pi^{m-1} = v_i$ and $l_j \cap \Pi^{m-1} = v_j$ are p-vertices of the subconfiguration Π^{m-1} according to case (P3) of theorem 6.

The polygon ΠF^2 corresponds to an (n-3)-dimensional face PF^{n-3} , the p-segments ΠF_i^1 and ΠF_j^1 correspond to the (n-2)-dimensional faces PF_i^{n-2} , PF_j^{n-2} , where $\Pi F_i^1 \subseteq \Pi F^2$, $\Pi F_j^1 \subseteq \Pi F^2$,

therefore $PF^{n-3} \subseteq PF_i^{n-2}$ and $PF^{n-3} \subseteq PF_j^{n-2}$. Thus after the extraction $PF^{n-3} \oplus S(\mathbf{z}) \subseteq PF_i^{n-2} \oplus S(\mathbf{z})$ and $PF^{n-3} \oplus S(\mathbf{z}) \subseteq PF_j^{n-2} \oplus S(\mathbf{z})$, where p-vertices v_i and v_j correspond to the facets $PF_i^{n-2} \oplus S(\mathbf{z})$ and $PF_j^{n-2} \oplus S(\mathbf{z})$ and a p-line \overline{l} corresponds to the (n-2)-dimensional faces $\langle PF^{n-3} \oplus S(\mathbf{z}) \rangle$ of $\mathcal{P} \oplus S(\mathbf{z})$. By lemma 2 $v_i, v_j \in \overline{l}$, consequently $\overline{l} = l$. That is $l \notin \Pi$ and $l \in \Pi \oplus H(\mathbf{z})$, thus $l \in \Pi^{m-1}$.

Consider a p-line l for which $l \notin \Pi$ and $l \in \Pi^{m-1}$. Let H^{m-1} be an (m-1)-dimensional hyperplane of the p-subconfiguration Π^{m-1} . Thus $\Pi^{m-1} \subseteq H^{m-1}$, consequently $l \subseteq H^{m-1}$. If the segment $(\Pi \oplus H(\mathbf{z}))F^1 \subseteq l$ and

$$(\Pi \oplus H(\mathbf{z}))F_1^0 \subseteq (\Pi \oplus H(\mathbf{z}))F^1 \text{ and } (\Pi \oplus H(\mathbf{z}))F_2^0 \subseteq (\Pi \oplus H(\mathbf{z}))F^1,$$
(10)

then for the corresponding parallelotope $\mathcal{P} \oplus S(\mathbf{z})$ by lemma 2

$$(\mathcal{P} \oplus S(\mathbf{z}))F_1^{n-1} \supseteq (\mathcal{P} \oplus S(\mathbf{z}))F^{n-2} \text{ and } (\mathcal{P} \oplus S(\mathbf{z}))F_2^{n-1} \supseteq (\mathcal{P} \oplus S(\mathbf{z}))F^{n-2}.$$
(11)

Before the extraction of the parallelotope \mathcal{P} the (n-2)-dimensional face $(\mathcal{P} \oplus S(\mathbf{z}))F^{n-2}$ was (n-3)-dimensional face $\mathcal{P}F^{n-3}$. For the facets $(\mathcal{P} \oplus S(\mathbf{z}))F_1^{n-1}, (\mathcal{P} \oplus S(\mathbf{z}))F_2^{n-1}$ there are two cases.

The facets $(\mathcal{P} \oplus S(\mathbf{z}))F_1^{n-1}$, $(\mathcal{P} \oplus S(\mathbf{z}))F_2^{n-1}$ are either (n-2)-dimensional faces $\mathcal{P}F_1^{n-2}$, $\mathcal{P}F_2^{n-2}$ or facets $\mathcal{P}F_1^{n-1}$, $\mathcal{P}F_2^{n-1}$. In the second case we choose (n-2)-dimensional faces $\mathcal{P}F_1^{n-2} \subseteq \mathcal{P}F_1^{n-1}$ and $\mathcal{P}F_2^{n-2} \subseteq \mathcal{P}F_2^{n-1}$ for which

$$\mathcal{P}F_1^{n-2} \supseteq \mathcal{P}F^{n-3} \text{ and } \mathcal{P}F_2^{n-2} \supseteq \mathcal{P}F^{n-3}.$$
 (12)

In the first case this relation holds. Thus for the p-configuration Π by lemma 2

$$\Pi F_1^1 \subseteq \Pi F^2 \text{ and } \Pi F_2^1 \subseteq \Pi F^2.$$
(13)

 $S \cap H^{m-1} = l$ is satisfied for $l_1 = \langle \Pi F_1^1 \rangle$, $l_2 = \langle \Pi F_2^1 \rangle$ and $S = \langle \Pi F^2 \rangle$. Q.e.d. Consequently the p-configuration $\Pi \oplus H(\mathbf{z})$ is equal to $\Pi \cup (\Pi \cap H^{m-1})$.

Acknowledgement

This research is supported by EFOP-3.6.1-16-2016-00006 "The development and enhancement of the research potential at John von Neumann University" project. The Project is supported by the Hungarian Government and co-financed by the European Social Fund.

References

- [1] M. Dutour Sikiric, V. Grishukhin, A. Magazinov, *On the sum of a parallelotope and a zonotope*, Eur. J.Comb.**42**, (2014), 49-73. https://doi.org/10.1016/j.ejc.2014.05.005
- [2] Á.G.Horváth, On the connection between the projection and the extension of a parallelotope, Monatsh. Math. 150, (2007), 211-216. https://doi.org/10.1007/s00605-005-0413-1
- [3] Hilbert, David; Cohn-Vossen, Stephan, Geometry and the Imagination, Chelsea, 1952
- [4] H. Martini, *Shadow-boundaries of convex bodies*, Discrete Math. **155** (1996), 161-172. https://doi.org/10.1016/0012-365x(94)00380-2
- [5] P. McMullen, Convex bodies which tile space by translation, *Mathematica* 27, (1980), 113-121. https://doi.org/10.1007/978-1-4612-5648-9-6
- [6] Reye, Th., Das Problem der Configurationen, Acta Math. Vol. 1. (1882), 93–96 pp. https://doi.org/10.1007/bf02592127
- [7] A. Végh, On parallelotope configuration, Gardus 7(3),(2020), 145-152. ISSN 2064-8014 https://doi.org/10.47833/2020.3.CSC.002

- [8] B.A. Venkov, On a class of Euclidean polytopes, *Vestnik Leningradskogo Univ.* **9**,(1954), 11-31. (in Russian) Zbl 0056.14103
- [9] B. A. Venkov, On projecting of parallelohedra, Mat. Sbornik 49,(1959), 207-224. (in Russian) Zbl 0087.04201