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Abstract
Consider a parallelotope P and its dual polytope P∗. The paral-
lelotope configuration or the p-configuration is a system of lines
and points projected vertices and edges of the polytope P∗ from
the center of the polytope P∗ to a special (n − 1)-dimensional
hyperplane. The extraction of the parallelotope defines an ex-
traction of the p-configuration, as well. In this paper we examine
properties of the extraction of the p-configuration.

1 Configurations

I have described the properties of the parallelotopes and of the p-configurations in details in [7].
In the current paper I will briefly summarize the most important concepts and I will investigate the
extraction of the p-configurations.

A configuration is a system of p points and g straight lines arranged in a plane in such a way that
every point of the system is incident with a fixed number γ of straight lines and every straight line of
the system is incident with a fixed number π of points. Notation: (pγ , gπ).

The following relation must be true for every configuration:

p · γ = g · π. (1)

The configurations in which the number of points is equal to the number of lines, i.e. for which p =
g and consequently γ = π are called symmetric or balanced configurations. For such a configuration
the notation pγ is used by [3], [6].

(32) symmetric (62, 43) nonsymmetric

Figure 1. Configurations in the plane

2 Parallelotopes

The parallelotope P is a convex polytope whose translated copies tile the space in a face to face
manner. The centers of the parallelotopes form an n-dimensional lattice. In the plane there are two
types of parallelotopes: parallelograms and centrally symmetric hexagons.
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Parallelotopes were characterized by B. A. Venkov[8] and later P. McMullen[5] in the following
way: a polytope P is a parallelotope if and only if P is centrally symmetric, each facet of P is cen-
trally symmetric, and the 2-dimensional orthogonal projection along any (n − 2)-face of P is either a
parallelogram or a centrally symmetric hexagon.

The edges of the parallelogram and the centrally symmetric hexagon are projections of the facets
of the parallelotope P. These facets form a 4- or a 6-belt, respectively.

B. A. Venkov introduced the concept of the parallelotope of non-zero width in the direction of a k-
subspace Xk. A parallelotope P has non-zero width along Xk if the intersection P∩(Xk+a) is either
k-dimensional or empty for every translation vector a. Denote by Fn−1 a facet of the parallelotope P
and by t the lattice vector between the centers of the two nearest parallelotopes P and Q where P
and Q have the common facet Fn−1. This lattice vector is called relevant vector of the facet Fn−1 by
[2].

Theorem 1. (B. A. VENKOV [9]) Let P be an n-dimensional parallelotope of non-zero width along Xk.
Then the projection of P along Xk is a parallelotope (of dimension n − k) and the lattice vectors ti
related to the facets Fn−1

i which are parallel to Xk generate an (n− k)-dimensional lattice spanning
a space Xn−k which is transversal to Xk.

By this theorem for k = n − 2 relevant vectors of a 4- or 6-belt span a 2-dimensional lattice, thus
these relevant vectors are in a plane.

Consider the parallelotopes P and Q of dimension n. For k = 1 denote by S(z) the segment Xk

of the direction z and of the length z. If there exists a direction z for which P ⊕ S(z) = Q, where ⊕
denotes the Minkowski sum, then P is called the contraction of Q and Q is the extraction of P. The
following theorem provides an important condition for the extraction of the parallelotope P to be a
parallelotope.

Theorem 2. [1] Let P be a parallelotope and z be a vector. P ⊕ S(z) is a parallelotope if and only if
z is parallel to at least one facet of each 6-belt.

Definition 1. The shadow boundary of a parallelotope P in the direction z consists of all boundary
points x of P for which the line {x + λz|λ ∈ R} is a support line of P. (There is no point of the line
{x + λz|λ ∈ R} belonging to the interior of P). It is denoted by shz(P).

It is well known that the shadow boundary of a convex polytope is the union of its several (n− 1)-
and (n− 2)-dimensional closed faces [4].

3 The p-configurations

Every n-polytope has a dual structure. It can be obtained by interchanging its vertices and facets,
edges and (n − 2)-dimensional faces, and so on, generally interchanging its (j − 1)-dimensional
elements and (n − j)-dimensional elements, preserving coincidence between elements. We use
duality for parallelotopes. The dual polytope of the parallelotope P is denoted by P ∗. Facets of a
parallelotope P are centrally symmetric, thus we can define vertices of dual polytope P ∗ by centers
of facets of the parallelotope P. For example consider the blue truncated octahedron in the picture 4.
The dual polytope is the red polytope, which is not a parallelotope.
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Duality p-configuration

Figure 2. Parallelotope configuration

Consider the dual polytope P∗ of a parallelotope P. The parallelotope configuration or the p-
configuration is a system of lines and points projected vertices and edges of the polytope P∗ from
the center of the polytope P∗ to an (n− 1)-dimensional hyperplane, which is parallel to a hyperplane
containing the center of the parallelotope P and not containing any vertex of the dual polytope P∗.
In this manner every parallelotope P determines a p-configuration denoted by Π. A line of a p-
configuration Π is called p-line. A vertex of a p-configuration Π is called p-vertex.

The notation of the p-configuration is

((p1)γ1 , (p2)γ2 , . . . , (pk)γk ; ((g1)π1 , (g2)π2 , . . . , (gl)πl), (2)

where pi is the number of points which belong to γi lines and gi is the number of lines which contain
πi points. The sum of pi is equal to the number of all points of the p-configuration and the sum of gi
is equal to the number of all lines of the p-configuration.

I proved the following properties of the p-configuration in [7].

Theorem 3. Every p-line contains two or three points of the p-configuration Π. Every point of the
p-configuration Π belongs to at least (n− 1) straight lines, these lines generate a (n− 1)-dimensional
hyperplane.

Theorem 4. The intersection of two uniplanar p-line is a point of the p-configuration Π.

Definition 2. The p-configurations Π1 and Π2 are combinatorially equivalent, if there is a bijection
between the p-vertices and the p-lines of the p-configurations Π1 and Π2 which preserves the point-
line coincidence. We denote combinatorially equivalent p-configurations by Π1

∼= Π2.

4 Parallelotopes and p-configurations

The pair of two centrally symmetric k-dimensional faces of the parallelotope P is denoted by PF k

and the set of parallel k-dimensional faces of the parallelotope P is denoted by
〈
PF k

〉
. Similarly

the pair of two centrally symmetric k-dimensional faces of the dual polytope P ∗ of the parallelotope
P is denoted by P ∗F k. If it is not ambiguous, the two opposite k-dimensional faces PF k are called
k-dimensional face. Similarly two opposite vertices PF 0 are called vertex of the parallelotope P.

Consider a k-dimensional convex polytope. If all vertices and all edges of the polytope are p-
vertices and p-segments of the p-configuration Π and the interior of the polytope does not contain
p-vertices or p-segments, then the system of p-vertices and p-segments of the polytope is called
k-dimensional face of the p-configuration Π and it is denoted by ΠF k. We remark that the convex
polytope is defined in projective sense. The k-dimensional subspace containing the face ΠF k is
denoted by

〈
ΠF k

〉
and the (n−1)-dimensional hyperplane containing the p-configuration Π is denoted

by 〈Π〉.
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Lemma 1. Consider an (n − 1)-dimensional p-configuration Π corresponding to an n-dimensional
parallelotope P. There is a bijection between an (n−k)-dimensional face PFn−k of the parallelotope
P and a (k − 1)-dimensional face ΠF k−1 of the p-configuration Π.

Proof. By the duality there is a bijection between the (n− k)-dimensional face PFn−k of the par-
allelotope P and the (k−1)-dimensional face P∗F k−1 of the dual polytope P∗ . The central projection
maps a (k − 1)-dimensional face P∗F k−1 of the dual polytope P∗ to a (k − 1)-dimensional poly-
tope F k−1. The central projection preserves the convexity (in projective sense) and the coincidence.
There is a one-to-one correspondence between the vertices and edges of the (k − 1)-dimensional
face P∗F k−1 of P∗ and the vertices and edges of the (k − 1)-dimensional polytope F k−1 and of Π.
Thus the (k − 1)-dimensional polytope F k−1 is a (k − 1)-dimensional face ΠF k−1 of Π.

In other direction if ΠF k−1 is a (k − 1)-dimensional face of Π then vertices of ΠF k−1 are the
central projections of vertices of the dual polytope P∗. The interior of the convex hull C of these
vertices contains only boundary points of P∗ otherwise the interior of ΠF k−1 contains p-vertices or
p-segments of Π, as well. Thus the convex hull C is a (k − 1)-dimensional face of Π because if
the dimension of the convex hull C is not (k − 1), then the dimension of the face of Π is different,
as well. A (n − k)-dimensional face of the parallelotope P corresponds to this (k − 1)-dimensional
face of Π. Consequenly there is a bijection between the (n − k)-dimensional face PFn−k and the
(k − 1)-dimensional face ΠF k−1.

Further on ΠF k−1 and PFn−k denote the corresponding faces of the p-configuration Π and of the
parallelotope P.

Lemma 2. Consider an (n−k)-dimensional face PFn−k and an (n−j)-dimensional face PFn−j of the
parallelotope P and the corresponding (k− 1)-dimensional face ΠF k−1 and (j − 1)-dimensional face
ΠF j−1 of the (n− 1)-dimensional p-configuration Π. PFn−j ⊆ PFn−k if and only if ΠF k−1 ⊆ ΠF j−1.

Proof. By the property of the duality PFn−j ⊆ PFn−k is satisfied if and only if P∗F k−1 ⊆ P∗F j−1

where P∗F k−1 and P∗F j−1 are faces of the dual polytope P∗. The central projection preserves the
relation ⊆, consequently P∗F k−1 ⊆ P∗F j−1 is equivalent to ΠF k−1 ⊆ ΠF j−1.

Lemma 3. Consider an (n− j)-dimensional face PFn−j and all (n− k)-dimensional faces PFn−ki of
the parallelotope P for which PFn−j ⊆ PFn−ki and consider the corresponding (j − 1)-dimensional
face ΠF j−1 and (k − 1)-dimensional faces ΠF k−1

i of the (n − 1)-dimensional p-configuration Π.
PFn−j =

⋂
i
PFn−ki if and only if ΠF j−1 = conv

(
ΠF k−1

i

)
.

Proof. Similarly to lemma 2 it is easy to see that the statement is satisfied by the property of the
duality and the central projection. We remark that the faces ΠF k−1

i are all (k − 1)-dimensional faces
of the (j − 1)-dimensional face ΠF j−1 for which ΠF k−1

i ⊆ ΠF j−1. Q.e.d.

By the definition of the p-configuration it can easily be seen that there is a bijection between a point〈
ΠF 0

〉
of Π and a facet

〈
PFn−1

〉
of P and between a segment ΠF 1 of Π and an (n− 2)-dimensional

face PFn−2 of P. Similarly according to theorem 3 a 1-dimensional line
〈
ΠF 1

〉
corresponds in a

one-to-one manner to parallel (n− 2)-dimensional faces
〈
PFn−2

〉
.

By lemma 1 there is a bijection an (n − 1)-dimensional face ΠFn−1 of Π and the vertex PF 0 of
P. The set

〈
PF 0

〉
consists of all vertices of the parallelotope P, thus the set of all facets P∗Fn−1 of

the dual polytope P∗ corresponds to the set
〈
PF 0

〉
. The central projection of all facets P∗Fn−1 of

the dual polytope P∗ fills the (n − 1)-dimensional hyperplane without gaps. Consequently there is a
one-to-one correspondence between the (n− 1)-dimensional hyperplane

〈
ΠFn−1

〉
of Π and vertices〈

PF 0
〉

of P and therefore
〈
ΠFn−1

〉
= 〈Π〉.

These special cases are generalized in the following lemma.

Lemma 4. Let P be an n-dimensional parallelotope of non-zero width along Xn−k and let the ele-
ments of the set

〈
PFn−k

〉
be parallel to Xn−k. There is a bijection between the set

〈
PFn−k

〉
of the

parallelotope P and the set of a (k − 1)-dimensional subspace
〈
ΠF k−1

〉
of the p-configuration Π for

which
〈
ΠF k−1

〉
∩Π is a (k − 1)-dimensional p-configuration Πk−1.
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Proof.
Generally by theorem 1 the lattice vectors ti related to the facets PFn−1

i which are parallel to
Xn−k generate a k-dimensional lattice spanning a space Xk, where i ∈ I. The center points of these
facets PFn−1

i generate the dual polytope Dk of a k-dimensional parallelotope Pk. By the definition of
the p-configuration the central projection of the polytope Dk is a (k − 1)-dimensional p-configuration
Πk−1 and Πk−1 ⊆ Π.

By theorem 1 the space Xk does not contain the center points of the facets which are not parallel
to Xn−k, thus the (k− 1)-dimensional hyperplane

〈
Πk−1

〉
does not contain other p-line or p-vertex of

the p-configuration Π, consequently 〈
Πk−1

〉
∩Π = Πk−1. (3)

Consider an arbitrary (n − k)-dimensional face PFn−k ∈
〈
PFn−k

〉
. By lemma 1, a (k − 1)-

dimensional face ΠF k−1 of Π corresponds to an (n − k)-dimensional face PFn−k of P. If PFn−k ⊆
PFn−1

j for the facets PFn−1
j where j ∈ J ⊆ I, then ΠF 0

j ⊆ ΠF k−1. On the other hand every vertex
ΠF 0

j ∈ Πk−1, therefore ΠF k−1 ⊆ Πk−1, consequently
〈
ΠF k−1

〉
=
〈
Πk−1

〉
because both sides are

(k − 1)-dimensional hyperplanes. Thus〈
ΠF k−1

〉
∩Π =

〈
Πk−1

〉
∩Π. (4)

Consequently
〈
ΠF k−1

〉
∩Π is a (k − 1)-dimensional p-configuration Πk−1.

Let ΠF
k−1 be an arbitrary (k−1)-dimensional face of Π. If ΠF

k−1 ⊆
〈
ΠF k−1

〉
and

〈
ΠF k−1

〉
∩Π =

Πk−1, then ΠF
k−1 ⊆ Πk−1 and the facets PFn−1

l corresponding to all vertices ΠF
0
l of ΠF

k−1 are
parallel to Xn−k. According to lemma 3 PFn−k =

⋂
PF

n−1
l for all l, thus PFn−k is parallel to Xn−k,

consequently PFn−k ∈
〈
PFn−k

〉
. Therefore there is a bijection between the set

〈
PFn−k

〉
parallel to

Xn−k and the (k − 1)-dimensional hyperplane
〈
ΠF k−1

〉
for which

〈
ΠF k−1

〉
∩Π = Πk−1. Q.e.d.

5 Extraction of p-configuration

Let Π be a p-configuration corresponding to a n-dimensional parallelotope P. The dimension of
Π is m = n− 1.

Definition 3. If the parallelotope P has zero width in direction z and P ⊕ S(z) is an extraction of this
parallelotope P, then P and P ⊕ S(z) determine two p-configurations denoted by Π and Π ⊕ H(z).
The p-configuration Π⊕H(z) is called an extraction of the p-configuration Π.

Theorem 5. Let P be a parallelotope and z be a direction, such that P has zero width in direction z.
Then Π⊕H(z) = Π ∪Πm−1, where Πm−1 is an (m− 1)-dimensional p-configuration .

Proof. For the segment S(z) and an n-dimensional parallelotope P which has zero width in
direction z the parallelotope P ⊕ S(z) contains 1-dimensional edges

〈
(P ⊕ S(z))F 1

〉
parallel to S(z).

Using lemma 4 one can see that an (m−1)-dimensional hyperplane
〈
(Π⊕H(z))Fm−1

〉
corresponds

to parallel 1-dimensional edges
〈
(P ⊕ S(z))F 1

〉
where

〈
(Π⊕H(z))Fm−1

〉
∩ (Π ⊕H(z)) is an (m −

1)-dimensional p-configuration Πm−1. Thus Πm−1 ⊆ Π ⊕ H(z) and Π ⊆ Π ⊕ H(z) consequently
Π ∪Πm−1 ⊆ Π⊕H(z).

On the other hand consider an arbitrary (k − 1)-dimensional face (Π ⊕ H(z))F k−1 of the p-
configuration Π ⊕ H(z). The (k − 1)-dimensional face (Π ⊕ H(z))F k−1 corresponds to the (n − k)-
dimensional face (P ⊕ S(z))Fn−k of the parallelotope P ⊕ S(z). If the (n − k)-dimensional face
(P ⊕ S(z))Fn−k is parallel to the direction z then (Π⊕H(z))F k−1 ∈ Πm−1. If the (n− k)-dimensional
faces (P ⊕ S(z))Fn−k is not parallel to the direction z then (Π ⊕ H(z))F k−1 ∈ Π. Consequently for
an arbitrary (k− 1) -dimensional face (Π⊕H(z))F k−1 ∈ Π∪Πm−1. Therefore Π∪Πm−1 ⊇ Π⊕H(z).
By Π ∪Πm−1 ⊆ Π⊕H(z) and Π ∪Πm−1 ⊇ Π⊕H(z) the equality holds.
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The above (m− 1)-dimensional p-configuration Πm−1 is called a p-subconfiguration.

Definition 4. The p-subconfigurations Πm−1
1 and Πm−1

2 are combinatorially equivalent, if Π∪Πm−1
1

∼=
Π ∪Πm−1

2 .

Theorem 6. Let Π ⊕ H(z) be an extraction of the p-configuration Π, then the intersection of the
p-subconfiguration Πm−1 and an arbitrary p-line of the p-configuration Π is

(P1) a p-line of the p-configuration Π

(P2) a p-vertex of the p-configuration Π,

(P3) a p-vertex of the p-configuration Π ⊕H(z), which is not a p-vertex of the p-configuration Π. In
this situation the p-line has to contain two p-vertices of Π.

Proof. Case 1. If the (n − 2)-dimensional faces
〈
PFn−2

〉
are parallel to the direction z, then

the corresponding 1-dimensional p-line
〈
ΠF 1

〉
is a p-line of the p-configuration Π and of the p-

subconfiguration Πm−1, as well.
Case 2. If the (n − 2)-dimensional faces

〈
PFn−2

〉
are not parallel to the direction z, then the

(n − 2)-dimensional faces
〈
PFn−2

〉
intersect the shadow boundary shz(P) in two opposite facets

PFn−1
i or two (n− 2)-dimensional faces PFi

n−2 because the shadow boundary of a convex polytope
is the union of its several (n − 1)- and (n − 2)-dimensional closed faces. If the intersection is two
facets PFn−1

i , then the corresponding 1-dimensional p-line
〈
ΠF 1

〉
contains the corresponding p-

vertex
〈
ΠF 0

〉
.

Case 3. If the intersection is two (n−2)-dimensional faces PFi
n−2, then PFi

n−2⊕S(z) are facets
PFi

n−1 of the parallelotope P ⊕ S(z), consequently a 1-dimensional p-line
〈
ΠF 1

〉
corresponding to

the (n − 2)-dimensional faces
〈
PFn−2

〉
intersects the p-subconfiguration Πm−1 in a new p-vertex

corresponding to two opposite facets (P ⊕ S(z))Fi
n−1

of (P ⊕ S(z)). If the (n − 2)-dimensional
faces

〈
PFn−2

〉
of the parallelotope P determine a 3-belt, then after the extraction it will be a 4-belt.

Consequently the (n− 2)-dimensional faces
〈
PFn−2

〉
of the parallelotope P determine a 2-belt, thus

the 1-dimensional p-line
〈
ΠF 1

〉
contains two p-vertices of the p-configuration Π.
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Definition 5. A p-line of the p-configuration Π is called a p3-line if the p-line contains three p-vertices.
A p-vertex of the p-configuration Π is called a p3-vertex, if the p-vertex belongs to at least one p3-line.
Let Hk be a k-dimensional subspace k < m.

V k
p3(H

k) =
{
vi|vi ∈ Hk ∩Π, vi a p3-vertex

}
, (5)

Lkp3(H
k) =

{
li|li ∈ Hk ∩Π, li a p3-line

}
. (6)

Definition 6. Let Π be a p-configuration and Hk be a k-dimensional subspace. For the set V ⊆
V k
p3(H

k) the generated set 〈V 〉 is defined in the following manner:

• If V = {vi}, then
〈V 〉 = 〈vi〉 := {vi}. (7)

• If V = {vi, vj}, then

〈V 〉 = 〈vi, vj〉 :=
{
vk|vi, vj , vk ∈ li, li ∈ Lkp3(Hk)

}
. (8)

• If |V | > 2, then

〈V 〉 :=
{
vk|vi, vj , vk ∈ li, li ∈ Lkp3(Hk), vi ∈ 〈Vi〉 , vj ∈ 〈Vj〉 , Vi, Vj ⊂ V, Vi ∩ Vj = ∅

}
. (9)

The generating system of the p3-vertices V k
p3(H

k) is G
(
V k
p3(H

k)
)
, if G

(
V k
p3(H

k)
)
⊆ V k

p3(H
k) and〈

G
(
V k
p3(H

k)
)〉

= V k
p3(H

k).

By theorem 3 every vertex vj of the p-configuration Π belongs to at least (n − 1) p-lines li and
these lines generate an (n − 1)-dimensional hyperplane. Consequently a basis can be choose form
these p-lines which is denoted by B(Ln−1

vi ) = {li|vj ∈ li, i = 1, . . . , n− 1}.

Definition 7. Consider a m-dimensional p-configuration Π and an (m − 1)-dimensional hyperplane
Hm−1. The (m − 1)-dimensional hyperplane Hm−1 is called a supplementer hyperplane of a p-
configuration Π, if the hyperplane Hm−1 and every p-line of the p-configuration Π has at least one
common point and every p-line contains at most three p-vertices (along with the new points) and
there is a generating system of p3-vertices G

(
V m−1
p3 (Hm−1)

)
for which G

(
V m−1
p3 (Hm−1)

)
⊆ V (Lmvi)

for any vi 6∈ Hm−1, where V (Lmvi) =
{
vk|vk = li ∩Hm−1 and li ∈ B(Ln−1

vi )
}

and the interior of the
convex hull of points V (Lmvi) does not contain any vertex of Π.

Lemma 5. Let PFn−1
vi be a facet corresponding to a vertex vi ∈ Π. If PFn−1

vi ‖Z for every vertex vi of

generating system G
(
V m−1
p3 (Hm−1)

)
, then PFn−1

vk
‖Z for every vertex vk ∈ V m−1

p3 (Hm−1), where Z

is a hyperplane.

Proof. At first, if for every vertex vp ∈ G
(
V m−1
p3 (Hm−1)

)
the facet PFn−1

vp is parallel toZ for

every vertex vp ∈ 〈vp〉 then for every set {vm, vn} ⊆ G
(
V m−1
p3 (Hm−1)

)
it holds that PFn−1

vq ‖Z for

every vertex vq ∈ 〈vm, vn〉 because PFn−1
vm ‖Z and PFn−1

vn ‖Z and by definition 6 vq, vm, vn ∈ li, thus
PFn−1

vq , PFn−1
vm , PFn−1

vn are the facets of a 3-belt, consequently PFn−1
vq ‖Z.

Generally suppose that for every set Vj ⊂ Vi ⊆ G
(
V m−1
p3 (Hm−1)

)
the facet PFn−1

vj is parallel to

Z for every vertex vj ∈ 〈Vj〉. We prove that PFn−1
vi ‖Z for every vertex vi ∈ 〈Vi〉. If vi ∈ 〈Vi〉 according

to definition 6 there is a vt ∈ 〈Vt〉 , vl ∈ 〈Vl〉 such that Vt, Vl ⊂ Vi and Vt ∩ Vl = ∅, vt, vl, vi ∈ li, li ∈
Lkp3(H

k), thus PFn−1
vt , PFn−1

vl
, PFn−1

vi are the facets of a 3-belt and because of the assumptions
PFn−1

vt ‖Z and PFn−1
vl
‖Z the facet PFn−1

vi is parallel to Z.

Consequently PFn−1
vk
‖Z for every vertex vk ∈ V m−1

p3 (Hm−1) =
〈
G
(
V m−1
p3 (Hm−1)

)〉
.
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Theorem 7. If an (m − 1)-dimensional hyperplane Hm−1 is a supplementer hyperplane of a p-
configuration Π, then there is a direction z that P ⊕ S(z) is a parallelotope and Πm−1 ⊆ Hm−1

for the p-subconfiguration Πm−1 of the p-configuration Π⊕H(z).

Proof. Since |V (Lmvi)| = |B(Lmvi)| = n−1 and the hyperplaneHm−1 is a supplementer hyperplane,

G
(
V m−1
p3 (Hm−1)

)
⊆ V (Lmvi), thus

∣∣∣G(V m−1
p3 (Hm−1)

)∣∣∣ ≤ n − 1 and the number of the facets PFn−1
G

of P corresponding to the generating system of the p3-vertices G
(
V m−1
p3 (Hm−1)

)
is at most (n− 1),

therefore the intersection of these facets is an at least 1-dimensional space Z. By lemma 5 every
facet of P corresponding to the p3-vertices of V m−1

p3 (Hm−1) are parallel to the space Z, consequently
according to theorem 2 the P ⊕ S(z) is a parallelotope for the segment S(z) ∈ Z.

If vk ∈ V (Lmvi) and vk ∈ Π, then the facet PFn−1 corresponds to the p-vertex vk = ΠF 0. If
vl ∈ V (Lmvi) and vl 6∈ Π then there is a p-segment ΠF 1, for which ΠF 1 ∩ Hm−1 = vl and the (n −
2)-dimensional face PFn−2 corresponds to the p-segment ΠF 1. Consider an (n − 1)-dimensional
support hyperplane SFn−1 of the (n− 2)-dimensional face PFn−2. So SFn−1 corresponds to the p-
segment ΠF 1. B(Ln−1

vi ) is a basis of the p-lines li 6∈ Hm−1, i = 1, . . . , n−1, thus the intersection of all
facets PFn−1

j corresponding to ΠF 0
j ⊂ lj ∈ Lj and all (n−1)-dimensional support hyperplanes SFn−1

i

corresponding to ΠF 1
i ⊂ li ∈ Li is a line z, where Li∪Lj = B(Lmvi). G

(
V m−1
p3 (Hm−1)

)
⊆ V (Lmvi) thus

for the segment S(z) the P ⊕ S(z) is a parallelotope.
The facets PFn−1

j and SFn−1
i are equivalent to the facets (P ⊕ S(z))Fn−1 thus for every vk ∈

V (Lmvi), vk = (Π⊕H(z))F 0. Furthermore the intersection of the facets (P ⊕ S(z))Fn−1 is a segment
S(z). By lemma 3 (Π ⊕ H(z))Fm−1 corresponding to the segment S(z) contains all vertices vk ∈
V (Lmvi), consequently

〈
(Π⊕H(z))Fm−1

〉
= Hm−1 because both (m − 1)-dimnesional hyperplanes

contain the same m-dimensional simplex. By lemma 4
〈
(Π⊕H(z))Fm−1

〉
∩ (Π⊕H(z)) is an (m−1)-

dimensional p-subconfiguration Πm−1, thusHm−1∩(Π⊕H(z)) = Πm−1, consequently Πm−1 ⊆ Hm−1.

Definition 8. Consider the supplementer hyperplane Hm−1 of a p-configuration Π. The vertices of
Π ∩Hm−1 are defined by points vi for which

(V 1) vi ∈ Π and vi ∈ Hm−1,

(V 2) vi = li ∩Hm−1 where li 6⊆ Hm−1.

The lines of Π ∩Hm−1 are defined by

(L1) p-lines li ∈ Π and li ∈ Hm−1,

(L2) S ∩ Hm−1 where S is a 2-dimensional plane generated by two p-lines li and lj of the p-
configuration Π and li, lj 6⊆ Hm−1.

Theorem 8. For the supplementer hyperplane Hm−1 of a p-configuration Π the intersection Π∩Hm−1

is equal to the p-subconfiguration Πm−1 of the p-configuration Π⊕H(z).

Proof. By theorem 7, if an (m− 1)-dimensional hyperplane Hm−1 is a supplementer hyperplane
of Π, then there is a direction z such that P ⊕ S(z) is a parallelotope and Πm−1 ⊆ Hm−1 for the
p-subconfiguration Πm−1 of Π⊕H(z). According to theorem 6 and definition 8 (P2) is equal to (V 1),
(P3) is equal to (V 2) and (P1) is equal to (L1), consequently it is sufficient to prove the equality for
case (L2).

Let l be equal to S ∩ Hm−1. By the case (L2) of the definition 8 p-lines li and lj generate a
2-dimensional plane S. On the one hand we can choose li, lj in such a way that the p-segments
ΠF 1

i ⊆ li and ΠF 1
j ⊆ lj have a common polygon ΠF 2 ⊆ S. On the other hand li, lj ⊆ S and

li, lj 6⊆ Hm−1, consequently li, lj 6⊆ Πm−1 by theorem 7. Thus li ∩ Πm−1 = vi and lj ∩ Πm−1 = vj are
p-vertices of the subconfiguration Πm−1 according to case (P3) of theorem 6.

The polygon ΠF 2 corresponds to an (n − 3)-dimensional face PFn−3, the p-segments ΠF 1
i and

ΠF 1
j correspond to the (n − 2)-dimensional faces PFn−2

i , PFn−2
j , where ΠF 1

i ⊆ ΠF 2, ΠF 1
j ⊆ ΠF 2,
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On extraction of p-configurations

therefore PFn−3 ⊆ PFn−2
i and PFn−3 ⊆ PFn−2

j . Thus after the extraction PFn−3⊕S(z) ⊆ PFn−2
i ⊕

S(z) and PFn−3⊕S(z) ⊆ PFn−2
j ⊕S(z), where p-vertices vi and vj correspond to the facets PFn−2

i ⊕
S(z) and PFn−2

j ⊕ S(z) and a p-line l̄ corresponds to the (n− 2)-dimensional faces
〈
PFn−3 ⊕ S(z)

〉
of P ⊕S(z). By lemma 2 vi, vj ∈ l̄, consequently l̄ = l. That is l 6∈ Π and l ∈ Π⊕H(z), thus l ∈ Πm−1.

Consider a p-line l for which l 6∈ Π and l ∈ Πm−1. Let Hm−1 be an (m−1)-dimensional hyperplane
of the p-subconfiguration Πm−1. Thus Πm−1 ⊆ Hm−1, consequently l ⊆ Hm−1. If the segment
(Π⊕H(z))F 1 ⊆ l and

(Π⊕H(z))F 0
1 ⊆ (Π⊕H(z))F 1 and (Π⊕H(z))F 0

2 ⊆ (Π⊕H(z))F 1, (10)

then for the corresponding parallelotope P ⊕ S(z) by lemma 2

(P ⊕ S(z))Fn−1
1 ⊇ (P ⊕ S(z))Fn−2 and (P ⊕ S(z))Fn−1

2 ⊇ (P ⊕ S(z))Fn−2. (11)

Before the extraction of the parallelotope P the (n−2)-dimensional face (P ⊕S(z))Fn−2 was (n−3)-
dimensional face PFn−3. For the facets (P ⊕ S(z))Fn−1

1 , (P ⊕ S(z))Fn−1
2 there are two cases.

The facets (P ⊕ S(z))Fn−1
1 , (P ⊕ S(z))Fn−1

2 are either (n− 2)-dimensional faces PFn−2
1 ,PFn−2

2

or facets PFn−1
1 ,PFn−1

2 . In the second case we choose (n− 2)-dimensional faces PFn−2
1 ⊆ PFn−1

1

and PFn−2
2 ⊆ PFn−1

2 for which

PFn−2
1 ⊇ PFn−3 and PFn−2

2 ⊇ PFn−3. (12)

In the first case this relation holds. Thus for the p-configuration Π by lemma 2

ΠF 1
1 ⊆ ΠF 2 and ΠF 1

2 ⊆ ΠF 2. (13)

S ∩Hm−1 = l is satisfied for l1 =
〈
ΠF 1

1

〉
, l2 =

〈
ΠF 1

2

〉
and S =

〈
ΠF 2

〉
. Q.e.d.

Consequently the p-configuration Π⊕H(z) is equal to Π ∪
(
Π ∩Hm−1

)
.
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