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parallelotope Consider a parallelotope P and its dual polytope P*. The paral-
extraction lelotope configuration or the p-configuration is a system of lines
p-configuration and points projected vertices and edges of the polytope P* from

the center of the polytope P* to a special (n — 1)-dimensional
hyperplane. The extraction of the parallelotope defines an ex-
traction of the p-configuration, as well. In this paper we examine
properties of the extraction of the p-configuration.
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1 Configurations

| have described the properties of the parallelotopes and of the p-configurations in details in [7].
In the current paper | will briefly summarize the most important concepts and | will investigate the
extraction of the p-configurations.

A configuration is a system of p points and g straight lines arranged in a plane in such a way that
every point of the system is incident with a fixed number ~ of straight lines and every straight line of
the system is incident with a fixed number 7 of points. Notation: (p-, gx).

The following relation must be true for every configuration:

p-y=g-m. (1)

The configurations in which the number of points is equal to the number of lines, i.e. for which p =
g and consequently v = & are called symmetric or balanced configurations. For such a configuration
the notation p,, is used by [3], [6].

(32) symmetric (62, 43) nonsymmetric

Figure 1. Configurations in the plane

2 Parallelotopes

The parallelotope P is a convex polytope whose translated copies tile the space in a face to face
manner. The centers of the parallelotopes form an n-dimensional lattice. In the plane there are two
types of parallelotopes: parallelograms and centrally symmetric hexagons.
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Parallelotopes were characterized by B. A. Venkov[8] and later P. McMullen[5] in the following
way: a polytope P is a parallelotope if and only if P is centrally symmetric, each facet of P is cen-
trally symmetric, and the 2-dimensional orthogonal projection along any (n — 2)-face of P is either a
parallelogram or a centrally symmetric hexagon.

The edges of the parallelogram and the centrally symmetric hexagon are projections of the facets
of the parallelotope P. These facets form a 4- or a 6-belt, respectively.

B. A. Venkov introduced the concept of the parallelotope of non-zero width in the direction of a &-
subspace X*. A parallelotope P has non-zero width along X* if the intersection PN (X* +a) is either
k-dimensional or empty for every translation vector a. Denote by F"~! a facet of the parallelotope P
and by t the lattice vector between the centers of the two nearest parallelotopes P and Q where P
and Q have the common facet F"~!. This lattice vector is called relevant vector of the facet F*~! by

2]

Theorem 1. (B. A. VENKOV [9]) Let P be an n-dimensional parallelotope of non-zero width along X*.
Then the projection of P along X* is a parallelotope (of dimension n — k) and the lattice vectors t;
related to the facets F|*~* which are parallel to X* generate an (n — k)-dimensional lattice spanning
a space X" * which is transversal to X*.

By this theorem for k = n — 2 relevant vectors of a 4- or 6-belt span a 2-dimensional lattice, thus
these relevant vectors are in a plane.

Consider the parallelotopes P and Q of dimension n. For k = 1 denote by S(z) the segment X*
of the direction z and of the length z. If there exists a direction z for which P & S(z) = O, where &
denotes the Minkowski sum, then P is called the contraction of Q and Q is the extraction of P. The
following theorem provides an important condition for the extraction of the parallelotope P to be a
parallelotope.

Theorem 2. [1] Let P be a parallelotope and z be a vector. P & S(z) is a parallelotope if and only if
z is parallel to at least one facet of each 6-belt.

Definition 1. The shadow boundary of a parallelotope P in the direction z consists of all boundary
points x of P for which the line {x + \z|\ € R} is a support line of P. (There is no point of the line
{x+ Az|\ € R} belonging to the interior of P). It is denoted by sh,(P).

It is well known that the shadow boundary of a convex polytope is the union of its several (n — 1)-
and (n — 2)-dimensional closed faces [4].

3 The p-configurations

Every n-polytope has a dual structure. It can be obtained by interchanging its vertices and facets,
edges and (n — 2)-dimensional faces, and so on, generally interchanging its (; — 1)-dimensional
elements and (n — j)-dimensional elements, preserving coincidence between elements. We use
duality for parallelotopes. The dual polytope of the parallelotope P is denoted by P*. Facets of a
parallelotope P are centrally symmetric, thus we can define vertices of dual polytope P* by centers
of facets of the parallelotope P. For example consider the blue truncated octahedron in the picture 4.
The dual polytope is the red polytope, which is not a parallelotope.
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On extraction of p-configurations

Duality p-configuration

Figure 2. Parallelotope configuration

Consider the dual polytope P* of a parallelotope P. The parallelotope configuration or the p-
configuration is a system of lines and points projected vertices and edges of the polytope P* from
the center of the polytope P* to an (n — 1)-dimensional hyperplane, which is parallel to a hyperplane
containing the center of the parallelotope P and not containing any vertex of the dual polytope P*.
In this manner every parallelotope P determines a p-configuration denoted by II. A line of a p-
configuration II is called p-line. A vertex of a p-configuration II is called p-vertex.

The notation of the p-configuration is

((p]-)’Yl7 (pZ)’Yz) LR (pk)"/k; ((gl)mv (92)7T27 ceey (gl)m)’ (2)

where p; is the number of points which belong to v; lines and g; is the number of lines which contain
m; points. The sum of p; is equal to the number of all points of the p-configuration and the sum of g;
is equal to the number of all lines of the p-configuration.

| proved the following properties of the p-configuration in [7].

Theorem 3. Every p-line contains two or three points of the p-configuration T1. Every point of the
p-configuration 11 belongs to at least (n — 1) straight lines, these lines generate a (n — 1)-dimensional
hyperplane.

Theorem 4. The intersection of two uniplanar p-line is a point of the p-configuration I1.

Definition 2. The p-configurations 11; and 11, are combinatorially equivalent, if there is a bijection
between the p-vertices and the p-lines of the p-configurations 11, and 11, which preserves the point-
line coincidence. We denote combinatorially equivalent p-configurations by T1; = Il,.

4 Parallelotopes and p-configurations

The pair of two centrally symmetric k-dimensional faces of the parallelotope P is denoted by PF*
and the set of parallel k-dimensional faces of the parallelotope P is denoted by (PF*). Similarly
the pair of two centrally symmetric k-dimensional faces of the dual polytope P* of the parallelotope
P is denoted by P*F*. If it is not ambiguous, the two opposite k-dimensional faces PF* are called
k-dimensional face. Similarly two opposite vertices PF are called vertex of the parallelotope P.

Consider a k-dimensional convex polytope. If all vertices and all edges of the polytope are p-
vertices and p-segments of the p-configuration IT and the interior of the polytope does not contain
p-vertices or p-segments, then the system of p-vertices and p-segments of the polytope is called
k-dimensional face of the p-configuration II and it is denoted by IIF*. We remark that the convex
polytope is defined in projective sense. The k-dimensional subspace containing the face ILF* is
denoted by <HF’“> and the (n—1)-dimensional hyperplane containing the p-configuration II is denoted

by (IT).

115



Attila Végh

Lemma 1. Consider an (n — 1)-dimensional p-configuration 11 corresponding to an n-dimensional
parallelotope P. There is a bijection between an (n — k)-dimensional face PF"* of the parallelotope
P and a (k — 1)-dimensional face TLF*~! of the p-configuration II.

Proof. By the duality there is a bijection between the (n — k)-dimensional face PF"~* of the par-
allelotope P and the (k — 1)-dimensional face P* F*~! of the dual polytope P* . The central projection
maps a (k — 1)-dimensional face P*F*~! of the dual polytope P* to a (k — 1)-dimensional poly-
tope F*~1. The central projection preserves the convexity (in projective sense) and the coincidence.
There is a one-to-one correspondence between the vertices and edges of the (k — 1)-dimensional
face P*F*~1 of P* and the vertices and edges of the (k — 1)-dimensional polytope F*~! and of II.
Thus the (k — 1)-dimensional polytope F*~!is a (k — 1)-dimensional face TIF*~! of II.

In other direction if IIF*~! is a (k — 1)-dimensional face of II then vertices of IIF*~! are the
central projections of vertices of the dual polytope P*. The interior of the convex hull C' of these
vertices contains only boundary points of P* otherwise the interior of IIF*~! contains p-vertices or
p-segments of II, as well. Thus the convex hull C' is a (k — 1)-dimensional face of II because if
the dimension of the convex hull C' is not (k — 1), then the dimension of the face of II is different,
as well. A (n — k)-dimensional face of the parallelotope P corresponds to this (k — 1)-dimensional
face of II. Consequenly there is a bijection between the (n — k)-dimensional face PF"~* and the
(k — 1)-dimensional face TIF*~1.

Further on TLF*~! and PF"* denote the corresponding faces of the p-configuration II and of the
parallelotope P.

Lemma 2. Consider an (n—k)-dimensional face PF"~* and an (n—j)-dimensional face PF"~7 of the
parallelotope P and the corresponding (k — 1)-dimensional face I1IF*~! and (j — 1)-dimensional face
IFJ=1 of the (n — 1)-dimensional p-configuration 11. PF"—J C PE™=% if and only if TF*—1 C TIF7~1.

Proof. By the property of the duality PF"~/ C PF"~* is satisfied if and only if P*Fk—1 C p*Fi—1
where P*Fk=1 and P*F7~! are faces of 1he dual polytope P*. The central projection preserves the
relation C, consequently P*F*~1 C P*Fi~1 is equivalent to TIF*~1 C TIF7 1,

Lemma 3. Consider an (n — j)-dimensional face PF"~7 and all (n — k)-dimensional faces PE"* of
the parallelotope P for which PF"~J C PFZ}"*’C and consider the corresponding (j — 1)-dimensional
face TIFI—' and (k — 1)-dimensional faces TIFF~' of the (n — 1)-dimensional p-configuration TI.

PF™=I = (\PF;~ if and only if TLF/~! = conv (TTF}~").
%

Proof. Similarly to lemma 2 it is easy to see that the statement is satisfied by the property of the
duality and the central projection. We remark that the faces ITF}~! are all (k — 1)-dimensional faces
of the (j — 1)-dimensional face TIF7~! for which IIFF~! C ITIF/—!. Q.e.d.

By the definition of the p-configuration it can easily be seen that there is a bijection between a point
(IIF?) of IT and a facet (PF"~!) of P and between a segment IIF* of IT and an (n — 2)-dimensional
face PF"~2 of P. Similarly according to theorem 3 a 1-dimensional line (IIF') corresponds in a
one-to-one manner to parallel (n — 2)-dimensional faces (PF"2).

By lemma 1 there is a bijection an (n — 1)-dimensional face ITF"~! of II and the vertex PF° of
P. The set (PF?) consists of all vertices of the parallelotope P, thus the set of all facets P*F"~! of
the dual polytope P* corresponds to the set <PF0>. The central projection of all facets P*F"~! of
the dual polytope P* fills the (n — 1)-dimensional hyperplane without gaps. Consequently there is a
one-to-one correspondence between the (n — 1)-dimensional hyperplane <HF"—1> of IT and vertices
(PF) of P and therefore (IIF™~1) = (II).

These special cases are generalized in the following lemma.

Lemma 4. Let P be an n-dimensional parallelotope of non-zero width along X"~* and let the ele-
ments of the set (PF"~*) be parallel to X"~*. There is a bijection between the set (PF"~*) of the
parallelotope P and the set of a (k — 1)-dimensional subspace <HF’“‘1> of the p-configuration 11 for
which (ILF*=1)Y N1l is a (k — 1)-dimensional p-configuration T1*~*.
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Proof.

Generally by theorem 1 the lattice vectors t; related to the facets PFZ."‘1 which are parallel to
X"~F generate a k-dimensional lattice spanning a space X*, where i € I. The center points of these
facets PFi”‘1 generate the dual polytope D* of a k-dimensional parallelotope P*. By the definition of
the p-configuration the central projection of the polytope D* is a (k — 1)-dimensional p-configuration
IM*1 and 1"~ C 1L

By theorem 1 the space X* does not contain the center points of the facets which are not parallel
to X" %, thus the (k — 1)-dimensional hyperplane (II*~!) does not contain other p-line or p-vertex of
the p-configuration II, consequently

<Hk—1> AT = IT+1, (3)

Consider an arbitrary (n — k)-dimensional face PF"~* € (PF"*). By lemma 1, a (k — 1)-
dimensional face ITF*~! of II corresponds to an (n — k)-dimensional face PF"~* of P. If PF"~F C
PF! for the facets PF"~" where j € J C I, then TIF) C TIF*~!. On the other hand every vertex
IFY e IT*!, therefore TIF*~! C TI*~!, consequently (ITF*~') = (IT*~') because both sides are
(k — 1)-dimensional hyperplanes. Thus

<HFk_1> AT = <H’“‘1> NIL (4)

Consequently (IIF*~1) N1l is a (k — 1)-dimensional p-configuration IT*!.

Let TTF"~ be an arbitrary (% —1)-dimensional face of TT. If TTF" ' € (ITF*~1) and (TIF*=1) 1T =

I1-1, then TTIF" ' C I1*~! and the facets PF, ' corresponding to all vertices TIF, of TIF"  are
parallel to X"—*. According to lemma 3 PF" " = "\ PF,” " for all I, thus PF" " is parallel to X",

consequently PF" " ¢ (PF™=F). Therefore there is a bijection between the set (PF"~*) parallel to
X"~* and the (k — 1)-dimensional hyperplane (ILF*~1) for which (IIF*~1) NII = II*~!. Q.e.d.

5 Extraction of p-configuration

Let IT be a p-configuration corresponding to a n-dimensional parallelotope P. The dimension of
ITism=n-—1.

Definition 3. If the parallelotope P has zero width in direction z and P & S(z) is an extraction of this
parallelotope P, then P and P & S(z) determine two p-configurations denoted by 11 and 11 & H (z).
The p-configuration 11 & H (z) is called an extraction of the p-configuration I1.

Theorem 5. Let P be a parallelotope and z be a direction, such that P has zero width in direction z.
ThenTl ® H(z) = ITUTII™ !, where 1™~ is an (m — 1)-dimensional p-configuration .

Proof. For the segment S(z) and an n-dimensional parallelotope P which has zero width in
direction z the parallelotope P ¢ S(z) contains 1-dimensional edges ((P @ S(z))F*') parallel to S(z).
Using lemma 4 one can see that an (m — 1)-dimensional hyperplane ((II & H(z))F™ ') corresponds
to parallel 1-dimensional edges ((P @ S(z))F*') where (Il ® H(z))F™ ') n (Il & H(z)) is an (m —
1)-dimensional p-configuration TI"™~1. Thus II™~! C T @ H(z) and II C II & H(z) consequently
MuIm™' CIl® H(z).

On the other hand consider an arbitrary (k — 1)-dimensional face (II @ H(z))F*~! of the p-
configuration IT @ H(z). The (k — 1)-dimensional face (Il & H(z))F"*~! corresponds to the (n — k)-
dimensional face (P @ S(z))F"* of the parallelotope P & S(z). If the (n — k)-dimensional face
(P @ S(z))F"* is parallel to the direction z then (IT® H(z))F*~! € I, If the (n — k)-dimensional
faces (P @ S(z))F"* is not parallel to the direction z then (I1 @ H(z))F*~! ¢ II. Consequently for
an arbitrary (k — 1) -dimensional face (I1® H(z))F*~! € TTulI™~!. Therefore ITUTI™~! D I ® H(z).
By ul™ ! CIl & H(z) and TUTI™ ™! D I @ H(z) the equality holds.
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The above (m — 1)-dimensional p-configuration I~ is called a p-subconfiguration.

Definition 4. The p-subconfigurations TI{"~ and T1;'~* are combinatorially equivalent, if TUTI]"~* =
muI .

Theorem 6. Let Il ® H(z) be an extraction of the p-configuration 11, then the intersection of the
p-subconfiguration TI™~' and an arbitrary p-line of the p-configuration 11 is

(P1) a p-line of the p-configuration 11
(P2) a p-vertex of the p-configuration 11,

(P3) a p-vertex of the p-configuration 11 & H(z), which is not a p-vertex of the p-configuration I1. In
this situation the p-line has to contain two p-vertices of I1.

Proof. Case 1. If the (n — 2)-dimensional faces (PF"~?) are parallel to the direction z, then
the corresponding 1-dimensional p-line <HF1> is a p-line of the p-configuration II and of the p-
subconfiguration I, as well.

Case 2. If the (n — 2)-dimensional faces (PF"?) are not parallel to the direction z, then the
(n — 2)-dimensional faces (PF"~?) intersect the shadow boundary sh,(P) in two opposite facets
PFZ.”‘1 or two (n — 2)-dimensional faces TE”_Q because the shadow boundary of a convex polytope
is the union of its several (n — 1)- and (n — 2)-dimensional closed faces. If the intersection is two
facets PF;"~!, then the corresponding 1-dimensional p-line (IIF') contains the corresponding p-
vertex (ILF).

Case 3. If the intersection is two (n — 2)-dimensional faces PF," 7’ then PE," @ S(z) are facets
PE,""" of the parallelotope P & S(z), consequently a 1-dimensional p-line (IIF') corresponding to
the (n — 2)-dimensional faces (PF"~?) intersects the p-subconfiguration II""! in a new p-vertex
corresponding to two opposite facets (P & S(z))Ffﬁ1 of (P & S(z)). If the (n — 2)-dimensional
faces (PF"~2) of the parallelotope P determine a 3-belt, then after the extraction it will be a 4-belt.
Consequently the (n — 2)-dimensional faces (PF"~?) of the parallelotope P determine a 2-belt, thus
the 1-dimensional p-line (ILF!) contains two p-vertices of the p-configuration II.

D O
A A
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On extraction of p-configurations

Definition 5. A p-line of the p-configuration 11 is called a p3-line if the p-line contains three p-vertices.
A p-vertex of the p-configuration 11 is called a p3-vertex, if the p-vertex belongs to at least one p3-line.
Let H* be a k-dimensional subspace k < m.

VE(HF) = {vi|vi e H* NI, v; a p3-vertex} , (5)

Lk (HF) = {ziui € H*NIL; a p3-/ine} . (6)

Definition 6. Let II be a p-configuration and H* be a k-dimensional subspace. For the set V C
VE(H*) the generated set (V) is defined in the following manner:

o IfV = {uv;}, then
(V) = (vi) :=={ui}. (7)

o IfV = {vi,vj}, then
<V> = <Ui,1)j> = {vk|v,~,vj,vk c ll,ll c L’;3(Hk)} . (8)

o If|V|>2,then

(V) = {vk\vi,vj,vk € li,l; € Lig(HY), v € (V) ,v; € (V}) Vi, V; CV, VNV = VJ}. (9)

The generating system of the p3-vertices Vj5(H*) is G (Vj5(HF)), if G (V.5(H")) € V5(H*) and
(G (Vis(HY))) = Vs (H).
By theorem 3 every vertex v; of the p-configuration II belongs to at least (n — 1) p-lines {; and

these lines generate an (n — 1)-dimensional hyperplane. Consequently a basis can be choose form
these p-lines which is denoted by B(L!1) = {l;jv; € l;, i =1,...,n — 1}.

Definition 7. Consider a m-dimensional p-configuration 11 and an (m — 1)-dimensional hyperplane
H™= ', The (m — 1)-dimensional hyperplane H™~! is called a supplementer hyperplane of a p-
configuration T1, if the hyperplane H™~! and every p-line of the p-configuration 11 has at least one
common point and every p-line contains at most three p-vertices (along with the new points) and

there is a generating system of p3-vertices G (VP@;H (H m—l)) for which G (V;?”(H m—1)> C V(L)
for any v; ¢ H™ ', where V(L") = {vi|vy, = l; " H™ * and I; € B(Ly')} and the interior of the
convex hull of points V (L;?) does not contain any vertex of I1.

Lemma 5. Let PE]! be a facet corresponding to a vertex v; € 11. If PE}"||Z for every vertex v; of
generating system G (V;?*(Hm*l)), then PE;~1||Z for every vertex v;, € Vgg‘l(H m=1) where Z
is a hyperplane.

Proof. At first, if for every vertex v, € G (%Tg‘l(Hm*l)) the facet PF;'~! is parallel toZ for

every vertex v, € (v,) then for every set {v,,,v,} C G (Vp?‘l(Hm*1)> it holds that PF;~!||Z for
every vertex v, € (um,v,) because PF)~1||Z and PE}!||Z and by definition 6 vg, vm, v, € I;, thus
PE; PE}-Y, PF! are the facets of a 3-belt, consequently PF;'~ | Z.

Generally suppose that for every set V; Cc V; C G (xgg—l(Hm-l)) the facet PFJ;_—l is parallel to

Z for every vertex v; € (V;). We prove that PF;' 1| Z for every vertex v; € (V). If v; € (V;) according
to definition 6 there is a vy € (V;),v; € (V) suchthat V;,V; C V;and V; NV, = 0, v, v, v; € 13, 1; €
Lks(HY), thus PE}-!, PF~!, PF'~! are the facets of a 3-belt and because of the assumptions
PF!'"1|Z and PF;}/"!||Z the facet PF;!~! is parallel to Z.

Consequently PF].~!||Z for every vertex vy, € V3~ (H™ 1) = <G (%@fl(Hm—l)) >
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Theorem 7. If an (m — 1)-dimensional hyperplane H™~! is a supplementer hyperplane of a p-
configuration 11, then there is a direction z that P @ S(z) is a parallelotope and 11~ C H™!
for the p-subconfiguration TI™~! of the p-configuration 11 & H (z).

Proof. Since |[V(L}")| = |B(L}')| = n—1 and the hyperplane H™~! is a supplementer hyperplane,

G (xgg—l(Hm—l)) C V(L™), thus (G (xg;g—l(ﬂm—l))( < n— 1 and the number of the facets PF? !

of P corresponding to the generating system of the p3-vertices G (%ﬁg‘l(Hm—l)) is at most (n — 1),
therefore the intersection of these facets is an at least 1-dimensional space Z. By lemma 5 every
facet of P corresponding to the p3-vertices of %@—I(Hmfl) are parallel to the space Z, consequently
according to theorem 2 the P @ S(z) is a parallelotope for the segment S(z) € Z.

If v, € V(L) and v, € II, then the facet PF"~! corresponds to the p-vertex v, = IIF°. If
v € V(L) and v; ¢ 11 then there is a p-segment ILF, for which IIF! N H™~! = v; and the (n —
2)-dimensional face PF™~2 corresponds to the p-segment IIF!. Consider an (n — 1)-dimensional
support hyperplane SF"~! of the (n — 2)-dimensional face PF"~2. So SF"~! corresponds to the p-
segment ITF!. B(L}~') is a basis of the p-lines /; ¢ H™!, i =1,...,n—1, thus the intersection of all
facets PFJ”‘1 corresponding to HFJQ C l; € L; and all (n—1)-dimensional support hyperplanes SF"
corresponding to IIF}! C [; € L; is aline z, where L, UL; = B(LY"). G (V;Q*(Hm—l)) C V(L) thus
for the segment S(z) the P @ S(z) is a parallelotope.

The facets PF]'"! and SF/"' are equivalent to the facets (P & S(z))F"~! thus for every v; €
V(L) v, = (I1® H(z))F°. Furthermore the intersection of the facets (P @ S(z))F™ ! is a segment
S(z). By lemma 3 (Il @ H(z))F™ ! corresponding to the segment S(z) contains all vertices v, €
V (L), consequently (Il ® H(z))F™~ ') = H™ ! because both (m — 1)-dimnesional hyperplanes
contain the same m-dimensional simplex. By lemma 4 (Il & H(z))F™ )N (Il® H(z)) is an (m —1)-
dimensional p-subconfiguration 1™, thus H™'N(II¢ H(z)) = 1™}, consequently [T ~! € ™1,

Definition 8. Consider the supplementer hyperplane H™! of a p-configuration I1. The vertices of
II N H™ ! are defined by points v; for which

(V1) v; €l andv; € H™ 1,

(V2) v =1; " H™ ! wherel; ¢ H™ .
The lines of 1 N H™! are defined by
(L1) p-linesl; el andl; € H™ 1,

(L2) SN H™ ! where S is a 2-dimensional plane generated by two p-lines I; and l; of the p-
configuration 1 and ;,1; ¢ H™ 1.

Theorem 8. For the supplementer hyperplane H™~! of a p-configuration 11 the intersection TIN H™~!
is equal to the p-subconfiguration I~ of the p-configuration I1 & H (z).

Proof. By theorem 7, if an (m — 1)-dimensional hyperplane H™~! is a supplementer hyperplane
of TI, then there is a direction z such that P @ S(z) is a parallelotope and II"~! C H™~! for the
p-subconfiguration II™~! of IT & H (z). According to theorem 6 and definition 8 (P2) is equal to (V1),
(P3) is equal to (VV2) and (P1) is equal to (L1), consequently it is sufficient to prove the equality for
case (L2).

Let I be equal to SN H™!. By the case (L2) of the definition 8 p-lines /; and I; generate a
2-dimensional plane S. On the one hand we can choose [;,1; in such a way that the p-segments
IF! C [; and HFj1 C I; have a common polygon IIF? C S. On the other hand /;,/; C S and
li,l; € H™ 1, consequently I;,1; Z TI"™~! by theorem 7. Thus [; N TI"™~! = v; and [; NI~ = v; are
p-vertices of the subconfiguration IT™~! according to case (P3) of theorem 6.

The polygon I1F? corresponds to an (n — 3)-dimensional face PF"~3, the p-segments I1F}! and
IIF} correspond to the (n — 2)-dimensional faces PF* %, PF}'~?, where TIF} C IIF?, IIF} C T1F?,
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therefore PF"~3 C PF'~* and PF"~3 C PF'*. Thus after the extraction PF" & S(z) C PF/'" &
S(z) and PF" 3@ S(z) C PFJT“2@S(Z), where p-vertices v; and v; correspond to the facets PF" 2@
S(z) and PF;H ® S(z) and a p-line [ corresponds to the (n — 2)-dimensional faces (PF"~3 & S(z))
of P® S(z). By lemma 2 v;,v; € [, consequently [ = [. Thatis ! ¢ Iland | € Il & H(z), thus [ € I™ L.

Consider a p-line [ for which [ ¢ TTand | € TI™~!. Let H™~! be an (m —1)-dimensional hyperplane
of the p-subconfiguration II™~!. Thus II™~! C H™!, consequently I C H™ !. If the segment
(MW® H(z))F! Cland

(II@ H(z))F) C (I® H(z))Fland (1 ® H(z))FY C (11 @ H(z))F*, (10)
then for the corresponding parallelotope P @ S(z) by lemma 2
(PoS(z)F 2 (PaS(z)F2and (P® S(z)Fy ' 2 (P& S(z)F" 2 (11)

Before the extraction of the parallelotope P the (n — 2)-dimensional face (P & S(z))F"~2 was (n — 3)-
dimensional face PF"~3. For the facets (P @ S(z))F" ', (P @ S(z)) Fy ' there are two cases.

The facets (P @ S(z))F" !, (P @ S(z))Fy ' are either (n — 2)-dimensional faces PF* 2, PFy 2
or facets PF;*~ !, PFy~ 1. In the second case we choose (n — 2)-dimensional faces PF}" 2 C PF}"*
and PFy 2 C PFy~ for which

PE2 D> PF"®and PFy 2 D PF" 3. (12)
In the first case this relation holds. Thus for the p-configuration II by lemma 2
IF! C TIF? and ITF) C T1F2 (13)
SnH™ ! =lis satisfied for I, = (IIF}'), lo = (IIF}) and S = (IIF?). Q.e.d.
Consequently the p-configuration IT & H (z) is equal to ITU (ITN H™1).
Acknowledgement

This research is supported by EFOP-3.6.1-16-2016-00006 "The development and enhancement
of the research potential at John von Neumann University" project. The Project is supported by the
Hungarian Government and co-financed by the European Social Fund.

References

[1] M. Dutour Sikiric, V. Grishukhin, A. Magazinov, On the sum of a parallelotope and a zonotope,
Eur. J.Comb.42, (2014), 49-73. https://doi.org/10.1016/j.ejc.2014.05.005

[2] A.G.Horvath, On the connection between the projection and the extension of a parallelotope,
Monatsh. Math. 150, (2007), 211-216. https://doi.org/10.1007/s00605-005-0413-1

[3] Hilbert, David; Cohn-Vossen, Stephan, Geometry and the Imagination, Chelsea, 1952

[4] H. Martini, Shadow-boundaries of convex bodies, Discrete Math. 155 (1996), 161-172.
https://doi.org/10.1016/0012-365x(94)00380-2

[5] P. McMullen, Convex bodies which tile space by translation, Mathematica 27, (1980), 113-121.
https://doi.org/10.1007/978-1-4612-5648-9-6

[6] Reye, Th., Das Problem der Configurationen, Acta Math. Vol. 1. (1882), 93-96 pp.
https://doi.org/10.1007/bf02592127

[7] A. Végh, On parallelotope configuration, Gardus 7(3),(2020), 145-152. ISSN 2064-8014
https://doi.org/10.47833/2020.3.CSC.002

121



Attila Végh

[8] B.A. Venkov, On a class of Euclidean polytopes, Vestnik Leningradskogo Univ. 9,(1954), 11-31.
(in Russian) Zbl 0056.14103

[9] B. A. Venkov, On projecting of parallelohedra, Mat. Sbornik 49,(1959), 207-224. (in Russian) Zbl
0087.04201

122



