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Abstract
The parallelotope P is a convex polytope which fills the space
facet to facet by its translation copies without intersecting by in-
ner points. A plane configuration is a system of p points and g
straight lines arranged in a plane in such a way that every point
of the system is incident with a fixed number γ of straight lines of
the system and every straight line of the system is incident with
a fixed number π of points of the system. In this paper we exam-
ine the connection of 3-dimensional parallelotopes and point-line
configurations in the plane and we generalize the concept of the
configuration to describe all parallelotopes, this way we define the
parallelotope configuration (p-configuration).

1 Parallelotopes

The parallelotope P is a convex polytope whose translated copies tile the space in a face to face
manner. The centers of the parallelotopes form an n-dimensional lattice. In the plane there are two
types of parallelotopes: parallelograms and centrally symmetric hexagons.

Parallelotopes were characterized by B. A. Venkov[15] and later P. McMullen[10] in the following
way

Theorem 1. A polytope P is a parallelotope if and only if

• P is centrally symmetric,

• each facet of P is centrally symmetric, and

• the 2-dimensional orthogonal projection along any (n− 2)-face of P is either a parallelogram or
a centrally symmetric hexagon.

The edges of the parallelogram and the centrally symmetric hexagon are projections of the facets
of the parallelotope P. These facets form a 4- or a 6-belt, respectively.

B. A. Venkov introduced the concept of the parallelotope of non-zero width in the direction of a
k-subspace Xk. A parallelotope P has non-zero width along Xk if the intersection P ∩ (Xk + a)
is either k-dimensional or empty for every translation vector a. Denote by F (n − 1) a facet of the
parallelotope P and by t the lattice vector between the centers of the two nearest parallelotopes P
and Q where P and Q have the common facet F (n − 1). This lattice vector is called relevant vector
of the facet F (n− 1) by [7].

Theorem 2. (B. A. VENKOV [16]) Let P be an n-dimensional parallelotope of non-zero width along
Xk. Then the projection of P along Xk is a parallelotope (of dimension n− k) and the lattice vectors
ti related to the facets Fi(n − 1) which are parallel to Xk generate an (n − k)-dimensional lattice
spanning a space Xn−k which is transversal to Xk.
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By this theorem for k = n − 2 relevant vectors of a 4- or 6-belt span a 2-dimensional lattice, thus
these relevant vectors are in a plane.

Consider the parallelotopes P and Q of dimension n. For k = 1 denote by S(z) the segment Xk

of the direction z and of the length z. If there exists a direction z for which P ⊕ S(z) = Q, where ⊕
denotes the Minkowski sum, then P is called the contraction of Q and Q is the extraction of P.

Two parallelotopes in the plane were well-known already in the antiquity: the centrally symmetric
hexagon (primitive) and the parallelogram (not primitive). E.S. FEDOROV in [5] described the 5 combi-
natorically different parallelotopes in 3-dimension among which the truncated octahedron is primitive
and the others, namely the elongated octahedron, the rhombic dodecahedron, the hexagonal prism
and the cube are not primitive. The following picture shows these 5 parallelotopes and their order
indicates the way how you can get one from the other by extraction.

Figure 1. 3-dimensional parallelotopes

B.N. DELONE [1] found 51 different types of the 4-dimensional parallelotopes. M.I. SHTOGRIN

gave the missing 52nd in [14]. 17 of these are zonotopes, the other 35 are the regular 24-cell and
its Minkowski sum with some zonotopes. Three out of these types are primitive. S.S. RYSHKOV and
E.P. BARANOWSKII [13] found 221 primitive 5-dimensional parallelotopes. One more was given by P.
ENGEL and V. GRISHUKHIN [4]. P. ENGEL in [2] and [3] gave 179372 combinatorically different types
of 5-dimensional parallelotopes.

In this paper we focus on 3-dimensional parallelotopes.

2 Configurations

A configuration is a system of p points and g straight lines arranged in a plane in such a way that
every point of the system is incident with a fixed number γ of straight lines and every straight line of
the system is incident with a fixed number π of points. Notation: (pγ , gπ).

The following relation must be true for every configuration:

p · γ = g · π. (1)

The configurations in which the number of points is equal to the number of lines, i.e. for which p =
g and consequently γ = π are called symmetric or balanced configurations. For such a configuration
we use the notation pγ .

(32) symmetric (62, 43) nonsymmetric

Figure 2. Configurations in the plane

146



On parallelotope configuration

The concept of the configuration may be generalized to higher dimensions, for instance to points
and lines in the space. Point-line configurations can be realized in n-dimensional euclidean or projec-
tive space. For example the Desargues configuration have 10 points and 10 lines, every point lies on
3 lines and every lines contains 3 points, consequently this is a symmetric configuration (103). The
Reye configuration (124, 163) is nonsymmetric.

Similarly, one can consider configurations of points and planes. In the Reye configuration there
are 12 points and 12 planes each point of the configuration belongs to 6 planes, each plane contains
6 points, therefore as point-plane configuration (126) is symmetric.

Desargues configuration Reye configuration

Figure 3. Configurations in space

Henceforth we are concerned with the connection of point-line configurations and parallelotopes.

3 Parallelotope configurations

Every n-polytope has a dual structure. It can be obtained by interchanging its vertices and facets,
edges and (n− 2)-dimensional faces, and so on, generally interchanging its (j − 1)-dimensional ele-
ments and (n−j)-dimensional elements, preserving incidence between elements. The dual polytope
of the polytope P is denoted by P ∗. We use duality for parallelotopes. Facets of a parallelotope P are
centrally symmetric, thus we can define vertices of dual polytope P ∗ by centers of facets of the paral-
lelotope P. For example consider the blue truncated octahedron in the picture 4. The dual polytope
is the red polytope, which is not a parallelotope.

Figure 4. Duality

Consider the dual polytope P∗ of a parallelotope P. The parallelotope configuration or p-
configuration is a system of lines and points projected vertices and edges of the polytope P∗ from the
center of the polytope P∗ to an (n−1)-dimensional hyperplane, which is parallel to a hyperplane con-
taining the center of the parallelotope P and not containing any vertex of the dual polytope P∗ . In this
manner every parallelotope P determines a p-configuration denoted by Π. A line of a p-configuration
Π is called p-line. An example is presented on figure 5.
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Figure 5. p-configuration

The notation of the p-configuration is

((p1)γ1 , (p2)γ2 , . . . , (pk)γk ; ((g1)π1 , (g2)π2 , . . . , (gl)πl), (2)

where pi is the number of points which belong to γi lines and gi is the number of lines which contain
πi points. The sum of pi is equal to the number of all points of the p-configuration and the sum of gi is
equal to the number of all lines of the p-configuration. Figure 6 shows p-configurations in the plane.

(32; 32) (13, 32; 13, 32) (62; 43)

(23, 42; 43, 12) (23, 42; 43, 12) (23, 42; 43, 12)

(43, 32; 63) (43, 32; 63)

Figure 6. p-configuration in the plane

The geometric realizations of the p-configuration (23, 42; 43, 12) and (43, 32; 63) are different, but
there is a projective transformation between the two geometric realizations.

4 Properties of the p-configuration

In this section we examine the properties of the p-configuration.

Theorem 3. Every p-line contains two or three points of the p-configuration Π. Every point of the
p-configuration Π belongs to at least (n− 1) straight lines, these lines generate a (n− 1)-dimensional
hyperplane.
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Proof. The parallelotope P contains 4- or 6-belt by theorem 1, thus the dual polytope P∗ has 4 or
6 vertices. On the other hand the parallelotope P is centrally symmetric, and so is the dual polytope
P∗. The central projection of 2 opposite vertices is a point on the (n− 1)-dimensional hyperplane. 4
or 6 vertices of the dual polytope P∗ are in a plane by theorem 2, causing that central projections of
these vertices are on a line.

The proof of the second statement. A point of the p-configuration Π corresponds to a facet of
the parallelotope P and a line of the p-configuration Π corresponds to a belt of the parallelotope
P. A facet F1 of the parallelotope P is centrally symmetric, so the centrally symmetric image of a
(n − 2)-dimensional face G1 of the parallelotope P is an other (n − 2)-dimensional face G2 of the
parallelotope P. The face G2 contains an other facet F2, this facet is centrally symmetric as well. The
face G3 is a centrally symmetric image of the face G2 to the center of the facet F2. Repeating this
procedure after 4 or 6 steps we get back the face G1 by teorem 1, in this way a (n − 2)-dimensional
face G1 of the parallelotope P determines a belt of the parallelotope P. There are at least 2 ∗ (n− 1)
opposite (n− 2)-dimensional faces on a facet Fi since it is a (n− 1)-dimensional centrally symmetric
polytope. On the hyperplane of the facet Fi the normal vectors of the (n − 2)-dimensional faces Gi
generate a (n− 1)-dimensional hyperplane.

So facet Fi contains (n − 1) different belts and consequently a point of the p-configuration Π
belongs to at least (n− 1) p-lines and these lines generate a (n− 1)-dimensional hyperplane.

Definition 1. The shadow boundary of a parallelotope P in the direction z consists of all boundary
points x of P for which the line {x + λz|λ ∈ R} is a support line of P. (There is no point of the line
{x + λz|λ ∈ R} belonging to the interior of P). It is denoted by shz(P).

It is well known that the shadow boundary of a convex polytope is the union of its several (n− 1)-
and (n− 2)-dimensional closed faces [9].

V. GRISHUKHIN [6] defined the z-cap of a parallelotope P. A. MAGAZINOV and Á.G. HORVÁTH

used this concept in [11], [7].

Definition 2. Let P be an n-dimensional parallelotope and the vector z be a free vector. The z-cap
Capz(P) of a parallelotope P consists of all the facets F of the parallelotope P which satisfy the
condition

z · n(F ) < 0, (3)

where n(F ) is the normal vector of the facet F .

Theorem 4. Both endpoints of every segments of the p-configuration Π are boundary points of the
p-configuration Π.

Proof. Consider a direction z for which the shadow boundary shz(P) is the union of only (n− 2)-
dimensional faces. It can easily be seen that projections of center points of facets Fi of the Capz(P)
for which shz(P)∩Capz(P) is a (n−2)-dimensional face (that is facets Fi adjoin to shadow boundary)
are the boundary points of a p-configuration Π.

Because of central symmetry every belt crosses the shadow boundary shz(P) in two (n − 2)-
dimensional faces. So two facets F1 and F2 of a belt are on a Capz(P) for which shz(P) ∩ F1 and
shz(P) ∩ F2 are (n− 2)-dimensional faces.

Figure 7. Endpoints of segments
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In this way both endpoints of segments corresponding to this belt are boundary points of a p-
configuration Π.

Definition 3. Let K be a (n− k)-dimensional face of the parallelotope P. Consider a k-dimensional
hyperplane H that intersects the face K transversally. In a small neighborhood of the face K the
section of the parallelotope tiling by the hyperplane H is called a fan of the face K and denoted by
Fan(K).

B.N. DELONE [1] determined five possible combinatorial types of 3-dimensional fans which can
be seen in figure 8.

I. II. III.

IV. V.

Figure 8. 3-dimensional fans

Lemma 1. Let K be a (n − 3)-dimensional face and Gi be a (n − 2)-dimensional face and Fi be a
facet of the parallelotope P. Denote by B(Gi) the set of facets Fi which form the belt of the (n − 2)-
dimensional face Gi. If K ⊆ G1 and K ⊆ G2 then B(G1) ∩B(G2) 6= ∅.

Proof. In the cases I, II, III if K ⊆ G1 and K ⊆ G2 then (n − 2)-dimensional faces G1 and G2

determine a facet of the parallelotope P, consequently the statement is true.
In the case IV for G1 = 〈A1,K〉 and G2 = 〈A2,K〉 the statement is similarly true.
The interesting case is for example G1 = 〈A1,K〉 and G2 = 〈A3,K〉. Let P0 = 〈A1, A2, A3, A4,K〉,

P1 = 〈A1, A2, A5, A6,K〉, P2 = 〈A2, A3, A6, A7,K〉. In this situation the central symmetric image of the
parallelotope P1 to the center C1 of the facet 〈A1, A2,K〉 is the parallelotope P0. Similarly the central
symmetric image of the parallelotope P2 to the center C2 of the facet 〈A2, A3,K〉 is the parallelotope
P0.

Facets F1 = 〈A1, A5,K〉 and F2 = 〈A3, A7,K〉 belong to a common (n − 1)-dimnesional hyper-
planeH. The central symmetric image of the facet F1 to the center C1 is a facet F ′1 of the parallelotope
P0, which is parallel to the facet F1. The central symmetric image of the facet F2 to the center C2

is also a facet F ′2 of the parallelotope P0, which is parallel to the facet F2, consequently F ′1 ‖ F ′2.
Because facets F ′1 and F ′2 are in the same halfspace of the hyperplane H, so F ′1 = F ′2 = F . On
the one hand G1 ⊆ F1 and G2 ⊆ F2 therefore G′1 ⊆ F and G′2 ⊆ F accordingly 〈G′1, G′2〉 = F . On
the other hand B(G1) = B(G′1) and B(G2) = B(G′2) thus F ∈ B(G′1) and F ∈ B(G′2), consequently
F ∈ (B(G1) ∩B(G2)).
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In the case V choosing A = A5 = A6 = A7 the proof is similar.

Theorem 5. The intersection of two uniplanar p-line is a point of the p-configuration Π.

Proof. A facet of the parallelotope P corresponds to a point of the p-configuration Π. An (n− 2)-
dimensional face (belt) of the parallelotope P corresponds to a line of the p-configuration Π. An
(n − 3)-dimensional face of the parallelotope P corresponds to a plane of the p-configuration Π.
The duality and the projection preserve the relation ⊆. So if a plane contains two p-lines of the p-
configuration Π, then an (n− 3)-dimensional face of the parallelotope P contains two corresponding
(n − 2)-dimensional faces of the parallelotope P. By lemma 1 the intersection of two p-lines corre-
sponding to two (n − 2)-dimensional faces of the parallelotope P is a point of the p-configuration Π
which corresponds to the facet of the parallelotope P.

Theorem 6. The convex hull of points of a p-configuration Π is a triangle in the plane.

Proof. In the plane the statement follows from theorem 5.
Generally, we form the following conjecture.

Conjecture 1. The convex hull of points of a p-configuration is a (n− 1)-dimensional simplex.
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